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Abstract

Geometric algorithms for interpretable manifold learning

Samson Koelle

Chair of the Supervisory Committee:
Professor Marina Meila
Department of Statistics

This thesis proposes several algorithms in the area of interpretable unsupervised learning.

Chapters 3 and 4 introduce a sparse convex regression approach for identifying local diffeomor-

phisms from a dictionary of interpretable functions. In Chapter 3, this algorithm makes use

of an embedding learned by a manifold learning algorithm, while in Chapter 4, this algorithm

is applied without the use of a precomputed embedding. Chapter 5 then introduces a set of

alternative algorithms that avoid issues stemming from sparse regression, characterizes the

tangent space version of this algorithm as identifying isometries when available, and gives

a two-stage algorithm combining this approach with the computational advantages of the

algorithms in Chapters 3 and 4. Finally, Chapter 6 gives an alternate tangent space estimator

based on a learned embedding, and uses this as an initial estimator to tackle the related

gradient estimation problem. Together, these approaches provide a toolbox of methods for

computing and associating gradient information to learn descriptive parameterizations of

data manifolds.
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Chapter 1

INTRODUCTION

Machine learning algorithms derive utility from the quality of their learned representations.

The ability of non-parametric algorithms to learn good representations of large datasets is

constantly increasing. This progress powers a wide range of applications. However, the use of

complicated black-box algorithms hinders the crucial notion of interpretability.

Interpretable models offer many advantages. They impart mechanistic understanding

and are safer to use. For example, a scientist may wish to know if a circular manifold

they observe in their cells’ gene-expression corresponds to position in the cell cycle, or a

physician using supervised learning to predict breast cancer from a mammogram may want

to know which parts of the image are actually driving the automated diagnosis. Interpretable

models can learn more efficiently and generalize better. From weather-prediction to robotics,

non-parametric algorithms constrained to solve intelligently-specified tasks require less data

to achieve comparable performance.

In all contexts, interpretability emerges through comparison of what is learnable by the

model with what is already known to be important in the domain of the problem. A particular

gene may govern the cell-cycle, a particular feature may drive a diagnosis, or a particular

equation may characterize the observed dynamics. However, a unifying framework for the

incorporation of intepretable information into non-parametric models has yet to emerge.

The lack of interpretability of learned representations contrasts with the estimates made

using parametric statistical methods such as linear regression. Parametric statistical models

give clarity about how individual covariate features drive response, and so the model is as

interpretable as the covariates. The modeller has control over the functions in the covariate

set, and so epistemic certainty is under her control. The is especially true when the model
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is constrained to be sparse. Unfortunately, there does not exist a comparable paradigm for

interpreting non-linear representations.

This thesis therefore introduces a set of algorithmic, statistical, and mathematical tools

for ascribing meaning to learned representations. In Chapters 3 and 4, we introduce a class of

non-linear regression models that find approximations to learned representations from within

sets of user-defined interpretable functions. Chapter 5 then gives some geometric implications

of these algorithms. Much of the material from Chapter 3 and 5 is taken from (107). Finally,

Chapter 6 gives tools for expanding the possible set of interpretable functions to observed

covariates, and provides a new perspective on the usefulness of original learned manifold

representation. A summary is given in Figure 1.1.

Data D Embedding φ

Covariate f Dictionary G

Manifold Learning

Chapter 4/5
Chapter 6 Chapter 3/5

Figure 1.1: The mathematical setting of the thesis. We give algorithms for establishing

relations between several classes of functions. Data D is the original data observed in

high-dimensional feature functions. An embedding φ consists of low-dimensional learned

representation functions. G refers to a set of analytically available interpretable covariate

functions which we call a dictionary. f refers to an interpretable covariates function available

only through sampling at the data points.

1.1 Chapter 3 Manifold Coordinates with Physical Meaning

Understanding the structure of a dataset D observed in a high dimensional space is typically

accomplished by applying an unsupervised manifold learning algorithm to learn an embedding

representation Φ. However, the learned coordinates of the embedding map are abstract, and

so interpretation is often left to a domain expert. Typically, this process relies on visualization
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inspection of the learned coordinates for the presence of covariates of interest. This chapter

introduces a method - ManifoldLasso - that automates this inspection process. It takes

as input D, Φ, and covariates of interest G, and learns map from G to Φ that is sparse with

respect to the functions in G. The selected functions in G form an interpretable representation

of D.

This automation procedure is a regularized regression method that linearizes the non-linear

support recovery problem by considering it on the differential level. Our contributions are

to i) formulate the interpretability problem as finding a set of functions in G that are a

local diffeomorphism to the data manifold, ii) provide an algorithm based on group lasso

for recovering this support, iii) provide an algorithm for estimation of gradients based on

the differential geometric notion of pullback, iv) provide a method for enabling our overall

differential algorithm in the rotationally and translationally invariant molecular shape space.

We provide results on multiscale real data from molecular dynamics.

1.2 Chapter 4 Dictionary-based Manifold Learning

This chapter introduces a simplified version of ManifoldLasso called TSLasso, or Tangent

Space Lasso. The Tangent Space Lasso does not interpret the coordinates of an existing

embedding, but rather composes a local diffeomorphism directly from a dictionary of supplied

functions by identifying a suitable subset whose gradients span the estimated data manifold

tangent spaces. The contributions of this chapter are i) the extension of the regression

technique from Chapter 3 to explaining subspaces rather than functions, and ii) application

to interpretable manifold learning. We apply this algorithm on molecular dynamics data, and

show that it generates functional support recovery comparable to ManifoldLasso without

use of an embedding.

1.3 Chapter 5 Manifold and Tangent Space Basis Pursuit

The previous chapters propose a set of regression methods for identifying sparse parameter-

izations of manifolds. These approaches suffer in the overcomplete dictionary setting and
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when G is large. First, the local diffeomorphism condition may not be a uniquely satisfied

success criteria. Second, the algorithm can fail to select a suitable parameterization when

support recovery conditions are violated.

Therefore, in this chapter we propose a modified set of objectives that trade computational

speed for robustness and specificity. These objectives are related to the convex dual of the

objectives from Chapter 3 and 4 but distinct in several important ways. Our contributions are

i) derivation of the Manifold and Tangent Space Basis Pursuit algorithms, ii) characterization

of the solution of the Tangent Space Basis Pursuit solution as finding a most isometric

embedding, and iii) introduction of a two-stage procedure that combines the regularized

and basis pursuit objectives to increase computational efficiency. Results are again given on

molecular dynamics data.

1.4 Chapter 6 Embedding-based Tangent Spaces for Gradient Estimation.

The paradigm for interpretable dimension reduction proposed in the previous chapters made

several assumptions that may not always be satisfied. First, we have assumed that the

”interpretable” covariates of interest are analytically available with respect to the features.

However, some covariates are separate pieces of information about the same samples, and so

the gradient information necessary for our Manifold and Tangent Space Lasso methods is not

immediately available. Second, we have assumed that the dataset is observed without noise

and that the learned embedding map is a diffeomorphism into a lower dimensional space.

This assumption does not reflect that manifold learning methods can also remove noise. This

chapter examines these deficiencies in greater detail.

We study the estimation of the gradient of a function f available only via its values at the

data points using local linear regression. At each data point, this gradient is an element of the

corresponding data manifold tangent space. Our contributions are i) we examine estimation

of this tangent space through the lens of manifold learning, ii) give a condition under which

the gradients of a learned representation may be used to estimate the data manifold tangent

space, iii) use a tangent space estimated in this manner in subsequent estimation of the
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gradient of a black-box function available only at the sample points. We show results on

simulated and astronomical data.
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Chapter 2

BACKGROUND

The core contribution of this thesis is a set of algorithms for interpretable unsupervised

learning. However, some of these algorithms may have independent interest. This chapter

reviews our general problem set-up, and relevant topics in differential geometry, manifold

learning, molecular dynamics, and statistics.

2.1 Problem formulations

We are given a dataset D ∈ Rn×D of points ξi ∈ RD for i ∈ [n]. In Chapters 3, 4, and 5, we

assume that this data is sampled from a smooth manifold M of intrinsic dimension d, where

d << D. This assumption is relaxed in Chapter 6. In Chapters 3, 5 and 6, we assume access

to a data embedding Φ ∈ Rn×m learned by a manifold learning algorithm acting on D that

preserves geometric or topological properties of M.

The task of Chapter 3 is to ascribe meaning to the learned representation Φ with respect

to a dictionary of user-defined and domain-related smooth functions G = {g1, . . . gp, with gj :

U ⊆ RD → R}, where U is an open set containing M. We give a regression method based

on the chain rule that sparsely selects a function basis among the elements of G.

In Chapter 4, we show that a similar method can be used without an embedding Φ. That

is, the method introduced in Chapter 3 itself can be used directly to find an interpretable

embedding.

Chapter 5 expands the method of Chapters 3 and 4 to more robustly handle the setting

where p is large. We provide a more specific manifold support recovery success criteria that

we link to the mathematical notion of isometry.

In contrast to the dictionaries used in the previous chapters, the covariate functions
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fε,1:n ∈ Rn studied in Chapter 6 are available only through observation at the data points.

Our task in this chapter is estimation the gradient of this function with respect to M. We

provide a two-stage method using the learned representation Φ for when data is sampled near

M rather than from it.

2.2 Differential geometry

The mathematical field of differential geometry provides the language for describing many

aspects of science, mathematics, and engineering, and therefore has attracted interest in the

data analytics community. This section therefore describes relevant background in this area

(1; 119). Where possible, we provide definitions in coordinates. For a complete treatment,

see Lee (119).

2.2.1 Manifolds

Manifolds are mathematical formalizations of surfaces of arbitrary dimension.

Definition 1. Let M be a topological space and U ⊆M be an open set. Then a coordinate

system ψ is a homeomorphism from U to V , an open subset of Rd. The pair (U, ψ) is known

as a chart and the inverse map ψ−1 is known as a parameterization.

Definition 2. An atlas is a set of charts {(Uα, ψα)} such that M = ∪α∈AUα.

Definition 3. A topological manifoldM is a second countable Hausdorff topological space

that admits an atlas {(Uα, ψα) : α ∈ A}.

Definition 4. A transition map is a map

ψα ◦ ψ−1
β : ψβ(Uα ∩ Uβ)→ ψα(Uα ∩ Uβ). (2.1)

Definition 5. A Ck smooth manifoldM is a topological manifold for which the transition

maps have continuous partial derivatives of order k.
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We say two atlases are equivalent if their union is an atlas, and equivalence classes of

atlases are called smooth structures. The smooth structure associated to a manifold is

independent of choice of atlas.

2.2.2 Tangent spaces

Many of the techniques in this thesis use differential operators in the tangent spaces of various

manifolds. While tangent spaces are defined intrinsically as sets of derivations of smooth

functions, they have a geometric interpretation that more readily lends itself to computational

analysis.

Definition 6. A derivation at ξ is a linear map d : C∞(M) → R satisfying d(fg) =

f(ξ)dg + g(ξ)df .

Definition 7. The tangent space TξM of a smooth manifold M at a point ξ ∈M is the

set of derivations at ξ.

Theorem 8. (118) The tangent space TξM of a d dimensional manifold M is isomorphic

to Rd.

Thus, the abstract notion of tangent space manifests as its familiar geometric intuition.

2.2.3 Differentials

The differential plays a central role in our comparisons of the geometric properties of manifolds

and of maps between them (118).

Definition 9. The differential of a smooth map φ :M→N between dM and dN dimen-

sional manifolds at a point ξ ∈M is a map

Dφ(ξ) : TξM→ Tφ(ξ)N (2.2)
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which, in bases x1 . . . xdM of TξM and y1 . . . ydN of Tφ(ξ)N has entries

Dφ(ξ) =


∂φ1(ξ)
∂x1

(ξ) . . . ∂φ1(ξ)

∂xdM
(ξ)

...
...

∂φdN (ξ)
∂x1

(ξ) . . . ∂φdN (ξ)

∂xdM
(ξ)

 . (2.3)

The rank of the differential characterizes two types of maps.

Definition 10. A smooth map φ :M→N from a dM to a dN dimensional manifold is a

submersion if rank(Dφ(ξ)) = dN , an immersion if rank(Dφ(ξ)) = dM for all ξ ∈M.

That is, immersions preserve local structure while submersions lower dimensionality.

Definition 11. A smooth map φ :M→ N is a diffeomorphism if it is a bijection with

smooth inverse.

Theorem 12. (119) A smooth map φ :M→N is a diffeomorphism if it is a bijection and

Dφ has constant rank.

Definition 13. When φ : M → N is a immersion, Dφ is known as the pushforward.

When φ is a diffeomorphism, Dφ−1 is known as the pullback.

Definition 14. A smooth map φ :M→N is a local diffeomorphism at a point ξ ∈M

if it is a bijection with smooth inverse in a open neighborhood U ⊂M containing ξ.

2.2.4 Submanifolds

Often, data lies in a subspace of some higher-dimensional space. Therefore, we make there

following definitions.

Definition 15. A dM dimensional submanifold M of a dE dimensional manifold E is a

subset M⊆ E such that the inclusion map i :M→M⊆ E is a smooth embedding.

Definition 16. A smooth map φ :M→N ⊆ E from a dM to a dN is an embedding if it

is an immersion and N is a manifold in the subspace topology inherited from E.
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The condition that the N only can be an embedding of M if it is an manifold in the

subspace topology prevents self-crossings and other singularities. The following theorem

justifies acquiring a low-dimensional representation of data observed in a high-dimensional

space.

Theorem 17. Whitney Embedding (119) Given a d dimensional smooth manifold M,

there exists an embedding of M into Rm with d ≤ m ≤ 2d.

The notion of fibration is used in several places throughout this thesis. We use these

spaces to model the removal of noise by an embedding algorithm in Chapter 6, but they are

also used implicitly in our analysis of the molecular shape space in Chapters 3, 4, and 5.

Definition 18. A fibered smooth manifold is a triple (E ,M, φ) of a dE dimensional

manifold E, a dM dimensional manifold M, and a mapping φ : E →M that is a surjective

submersion.

Definition 19. At a point ξ ∈ M, define the normal space of TξM within TξE to be

Nξ(M, E) := TξE/TξM.

Finally, note that we can represent tangent spaces of submanifolds using linear algebra.

A tangent space TξM of a d dimensional submanifold M of RD at a point ξ ∈ M is a d

dimensional linear subspace of RD, and therefore an element of the Grassmannian G(d,D).

An orthonormal basis TMξ for this this space is an element of the Stiefel manifold St(d,D).

2.2.5 Metric geometry

Riemannian geometry allows introduction of angles and distances on manifolds.

Definition 20. Given a d dimensional smooth manifold M, a Riemannian metric g is

a symmetric positive definitive tensor field that defines an inner product 〈u, v〉g(ξ) on every

TξM∈M.
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That is, g(ξ) : TξM×TξM→ R≥0 that is positive definite, linear, and symmetric for all

ξ ∈M. Given a point ξ ∈M, g(ξ) can be represented as a symmetric positive definite d by

d matrix Gξ that depends on choice of tangent basis for TξM. When 〈u, v〉g(ξ) = 〈u, v〉 for

all u, v ∈ TξM, we call it inherited from the ambient space, and denote it as id.

Definition 21. A Riemannian manifold (M,g) is a pair of a d dimensional smooth

manifold M and a Riemannian metric g on M.

Using the Riemannian metric, we can state the condition for geometric equivalence of two

manifolds.

Definition 22. A diffeomorphism φ between two Riemannian manifolds (M,g) and (N,h)

is an isometry if, for all points ξ ∈M

〈u, v〉g(ξ) = 〈Dφu,Dφv〉h(φ(ξ))

for all u, v ∈ TξM.

Proposition 23. Given an isometry φ, if g = id and h = id, then Dφ(ξ) is a unitary d× d

matrix at all points ξ ∈M.

Proof. Since φ is an isometry, uTv = uTDφ(ξ)TDφ(ξ)v for all u, v ∈ TξM. Therefore,

Dφ(ξ)TDφ(ξ) = Id, and so Dφ(ξ) is unitary.

Other mappings like similarity transformations, conformal maps, and orthogonal coordi-

nates may also be characterized by the linear algebraic properties of Dφ.

Many statistical algorithms seek to identify low-dimensional isometric embeddings. The

following theorem shows that this is possible.

Theorem 24. Nash Embedding A d dimensional smooth manifold M can be isometrically

embedded in Rs where s = max(d(d+1)
2

+ 2d, d(d+1)
2

+ d+ 5).

Unfortunately, the proof technique of this theorem is non-constructive, and does not

give an algorithm for finding the desired mapping (54). In contrast, the locally isometric
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embedding of d dimensional manifolds with non-zero curvature into d dimensions is not

possible (108). The challenge of finding isometric embeddings has lead to study of the metric

induced by φ itself (151).

Definition 25. For any diffeomorphism φ :M→N , exists a unique Riemiannian metric

called the pushforward metric h such that (129)

〈u, v〉g(ξ) = 〈Dφ(ξ)u,Dφ(ξ)v〉h(φ(ξ)). (2.4)

Lemma 26. For any diffeomorphism φ : M → N , when g = id, the pushforward metric

h(φ(ξ)) = Dφ−1(φ(ξ))
T
Dφ−1(φ(ξ)).

Proof. 〈u, v〉g(ξ) = uTv. On the other hand,

〈Dφu,Dφv〉h(φ(ξ)) = uTDφ(ξ)THφ(ξ)Dφ(ξ)v. (2.5)

Since φ is a diffeomorphism, Dφ(ξ) is full rank, and so is invertible with (Dφ−1(φ(ξ)))T =

(DφT (φ(ξ)))−1 with respect to orthogonal bases of TξM and Tφ(ξ)φ(M). Thus, H(φ(ξ)) =

Dφ−1(φ(ξ))
T
Dφ−1(φ(ξ)).

As shown in (151), this also extends to tangent coordinates of submanifolds in the

expected way using pseudoinverses. Their technique for estimating this metric uses the

manifold Laplacian, which encodes geometric information about the manifold M.

Definition 27. The manifold Laplacian, also known as the Laplace-Beltrami operator

is a differential operator on functions f :M→ R. In coordinates, it is given by

∆M : Ck(M)→ Ck−2(M) (2.6)

f(ξ) 7→ 1

det(g(ξ))

d∑
i=1

d∑
j=1

1

∂xi

√
det(g(ξ))gij(ξ)

∂f

∂xj
(2.7)

In tangent coordinates when g = id

∆M(f) =
d∑

k=1

∂2f

∂x2
. (2.8)
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In other words, ∆Mf = div grad f , where grad represents the gradient of f and div the

divergence vector field operator.

Definition 28. The gradient of a smooth function f : M→ R at ξ ∈ M is the unique

vector gradM f(ξ) ∈ TξM satisfying

〈gradM f(ξ), v〉g(ξ) = Df(ξ) for any u ∈ TξM. (2.9)

Here, Df is the differential of f consisting of partial derivatives, as in Equation 2.3.

Thus, in coordinates, gradTMξ ,id = [ ∂f
∂x1

(ξ) . . . ∂f
∂xd

(ξ)]T , and, contravariantly, gradTMξ ,g =

G−1
ξ gradTMξ ,id. We generically refer to gradTMξ ,id as gradTMξ ,id. Similarly, we can define the

gradient of a function f w.r.t. M as a submanifold of RD. WhenM⊂ RD, and f is a smooth

function of RD, then gradM f(ξ) satisfies gradM f(ξ) = ProjTξM(∇ξf(ξ)) where ProjTξM

denotes the Euclidean projection onto the subspace TξM, and ∇ξf(ξ) = [ ∂f
∂x1

(ξ), . . . ∂f
∂xD

(ξ)]T

is the vector of partial derivatives of f w.r.t. the Euclidean coordinates of RD. Then

gradTMξ f = TMξ
T∇ξf.

2.3 Manifold learning

Manifold learning (ML) is a collection of approaches for data analysis based on the principle

that the dimensionality of many high-dimensional data sets is often only artificially high. That

is, we assume data is sampled i.i.d. from a smooth manifold M of dimension d embedded

within a high-dimensional feature space RD. ML includes methods from unsupervised

dimension reduction, to supervised representation learning, to in situ denoising algorithms,

and is motivated by diverse tasks like compression, visualization, and noise reduction. This

section reviews several relevant algorithms with focus on statistical estimators of the geometric

objects introduced in the previous sections.

2.3.1 Unsupervised learning

Algorithms like Isomap, Local Tangent Space Alignment, Autoencoders, Diffusion Maps,

t-SNE, and UMAP are used to create low-dimensional representation of high-dimensional
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data in applications from genomics to chemistry. Ideally, these methods preserve topoligical

and geometric features of the data manifold as it lies in the high-dimensional feature space.

For example, if our data lie on a sphere in the original space, then we desire that they

should also lie on a sphere in our learned lower-dimensional space, with distances between

observations in the low-dimensional space corresponding to distances between observations

in the high-dimensional space. Unfortunately, popular algorithms like t-SNE and UMAP

have not been shown to converge to some geometric object from the manifold sample space.

Without the statistical quality of consistency, the user of a dimension reduction algorithm is

left to guess about its accuracy. This has lead to controversy (40) and the development of

data-driven evaluation techniques (153). In contrast, the convergence of the sample graph

Laplacian to the manifold Laplace-Beltrami operator provides a principled estimation strategy

for uncovering geometric and topological information about large complex datasets (21).

This directly leads to consistency results for the derivative Diffusion Maps and Laplacian

Eigenmaps learning algorithms which we will use throughout the thesis.

2.3.2 The neighborhood graph

The neighborhood graph G = (V,E) consists of vertices representing data points ξi and

edges denoting adjacency of a data point ξi to its set of neighbors Ni = {i′ ∈ [n],with ‖ξi′ −

ξi‖ ≤ r}, where r is a neighborhood radius parameter. The neighborhood relation is

symmetric, and so determines an undirected graph with nodes represented by the data

points. This graph is an unsurprising starting place for manifold learning, since the empirical

neighborhoods encode topological information about the data manifold. Many unsupervised

learning methods including Diffusion Maps, Isomap, Local Tangent Space Alignment, t-SNE,

and UMAP all begin with construction of G.
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2.3.3 The kernel matrix

The Gaussian kernel matrix K ∈ Rn×n whose elements are

Ki,i′ =

exp
(
−‖ξi−ξi′‖

ε2N

)
if i′ ∈ Ni

0 otherwise.

(2.10)

encodes adjacency information in a more detailed way using real values weights. Typically,

the radius r and the bandwidth parameter ε are related by r = cε with c a small constant

greater than 1. In this thesis we set c = 3. This ensures that K is close to its limit when

r →∞ while remaining sparse, with sparsity structure induced by the neighborhood graph.

We denote rows of this matrix as Ki,Ni to emphasize that only ki values of each row i are

needed. The kernel matrix will be used in both our embedding and tangent space estimation

steps.

2.3.4 The renormalized graph Laplacian

We estimate the manifold Laplace-Beltrami operator ∆M by the renormalized graph

Laplacian, also known as the sample Laplacian, or Diffusion Maps Laplacian L (49).

As for K, construction of this neighborhood graph is the computationally expensive component

of this algorithm. Elements and rows of L will be denoted by Li,i′ and Li,Ni , respectively,

since the sparsity pattern of L is given by the neighborhood graph.
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Algorithm 1 Laplacian(neighborhoods N1:n, local data Ξ1:n, bandwidth ε)

1: Compute kernel matrix K using (2.10)

2: Compute normalization weights wi ←
∑

i′∈Ni Ki,i′ , i = 1, . . . n, W ← diag(wi, i = 1 : n)

3: Normalize L̃ ← W−1KW−1

4: Compute renormalization weights w̃i ←
∑

i′∈Ni L̃i,i′ , i = 1, . . . n, W̃ = diag(w̃i, i = 1 : n)

5: Renormalize L ← 4
ε2

(W̃−1L̃− In)

6: Output Kernel matrix K, Laplacian L

The proof of this consistency of this estimator, constructed by the Laplacian algorithm,

is an important result in manifold learning (49). It is unbiased w.r.t. the sampling density

on M (84; 85; 181). L is a sparse matrix; its i-th row contains non-zero values only for

i′ ∈ Ni. In summary, we compute L = In −KW̃−1W−1KW−1 where W = diag(K1n) and

W̃ = diag(W−1KW−11n), where 1n is a vector of 1 of length n.

2.3.5 Diffusion Maps

Although any algorithm which asymptotically generates a smooth embedding would be

acceptable for most of the methods in this thesis, we generally use the Diffusion Map

(49) or the Laplacian Eigenmap (19) embedding of D. The Diffusion Maps embedding

coordinates φk are the m principal eigenvectors of L. This embedding has well-known

statistical properties. As L converges to ∆M , the m principal eigenvectors of L converge to

the m principal eigenfunctions of ∆M (191).

2.3.6 Estimating tangent spaces

We use the Weighted Local Principal Component Analysis algorithm described in

wlpca to estimate tangent spaces ofM at data points ξi (41). For this algorithm and others

we define the SVD algorithm svd(X, d) of a symmetric matrix X ∈ RD×D as outputting V,Λ,
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where Λ ∈ Rd and V ∈ RD×d are the largest d eigenvalues and their eigenvectors, respectively.

Again, denote a column vector of ones of length k by 1k.

Algorithm 2 wlpca(local data Ξi, kernel row Ki,Ni , intrinsic dimension d)

1: Compute normalization weights wi ←
∑

i′∈Ni Ki,i′

2: Compute weighted mean ξ̄i ← 1
wi
Ki,NiΞi

3: Compute weighted local differences

Zi ← diag(K
1/2
i,Ni)(Ξi − 1ki ξ̄i)

4: Compute Ti,Λ← SVD(ZT
i Zi, d)

5: Output Ti

Estimation of tangent spaces in the presence of noise is an active area of research (6; 155).

2.3.7 Isometric embeddings of data

Isometric embeddings preserve information like angles and lengths of curves between points.

This is important both for visualization, as well as for statistical tasks like nearest neighbor

regression. This has motivated a search for algorithms that perform isometric embeddings.

This can be induced either through preservation of distances between points (123; 147) or

explicit control of the metric properties of the learned embedding map (156; 165; 109; 129).

However, comprehensively useful algorithm for learning as isometric as possible embeddings

has not emerged (185).

An alternative approach is to explicitly estimate the pushforward metric of the coordinates

output by learned embedding map that takes data points ξi to points φ(ξi) ∈ φ(M) ⊂ Rm.

The RMetric algorithm (152) for estimating this metric acts on local position matrices

Φi := [φ(ξi′) : i′ ∈ Ni] ∈ Rki×m of a neighborhood in Rm. Let g now be the pushforward

metric induced by a learned embedding φ, and denote by g† the inverse metric on the

cotangent space of φ(M), which, in coordinates at a point φ(ξ), is given by G†φ(ξ) = (Gφ(ξ))
†,

the pseudoinverse of Gφ(ξ). We can estimate Gi using the following estimator of the inverse
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Riemmanian metric G†i at a data point ξi:

Ĝ†kk′(ξi) =
1

2

∑
i∈Ni

Lii′(φ
k(ξi′)− φk(ξ))(φk

′
(ξi′)− φk

′
(ξ)) (2.11)

where φk and φk
′

are coordinate functions of Rm. That is, the L may be used to identify the

pushforward metric in any coordinate system.

Algorithm 3 RMetric(Laplacian row Li,Ni , local embedding coordinates Φi, intrinsic

dimension d)

1: Compute centered local embedding coordinates

Φ̃i = Φi − 1kiφ(ξi)
T

2: Form matrix G†i by

G†i ← [G†i,k,k′ ]k,k′∈1:m with G†i,k,k′ =
∑

i′∈Ni Li,i′Φ̃i,i′,kΦ̃i,i′,k′ for k, k′ = 1 : m.

3: Compute Vi,Λi ← SVD(G†i , d)

4: Gi ← ViΛ
−1
i V T

i .

5: Output Gi, optionally Vi,Λi

2.3.8 Tuning

The main hyperparameters used in this thesis are the manifold dimension d and the smoothing

bandwidth ε. The methods we introduce are somewhat independent to questions of parameter

tuning, and so we will assume that these parameters are known. However, we briefly review

several methods to estimate d and ε.

Bandwidth estimation A common task in fitting manifold learning algorithms is deter-

mination of the neighborhood radius r and kernel bandwidth ε (104). Many approaches exist.

We use a method that minimizes distortion measured using the pushforward metric (98).

Dimension estimation There are several commonly used types of manifold dimension

estimation methods. One set of methods is based on the observation that, given a uniform
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density, the number of neighbors within a given radius of a point corresponds to the manifold

dimension (105; 120). A second is based off of spectral thresholding of local principal

components (145). In practice, while these estimators behave well under low or no noise, they

are challenged by even limited amounts of noise. See Erba et al. (63) for a modern review.

2.4 Statistics background

The statistical setting of this thesis integrates two types of literature. On the one hand, this

thesis uses tools like ordinary least squares and group lasso in new manifold learning contexts.

On the other, manifold learning methods themselves have statistical properties. This thesis

does not fully settle the convergence properties of the algorithms presented herein. However,

the properties of these estimators give perspective on our contributions.

2.4.1 Linear regression

We use linear regression in several ways. Chapters 3, 4, and 5 propose regression methods for

learning a parameterization of a manifold from a dictionary based off of linear regression in

tangent bundles, Chapters 3 and 6 tackle gradient estimation using local linear regression,

and Chapter 6 performs tangent space estimation via a local linear regression method.

Given data ξ1:n ∈ Rn×D and f1:n ∈ Rn, the ordinary least squares algorithm solves

β̂ = ols(X, Y ) := arg min
β∈RD

‖f1:n − ξ1:nβ‖2
2. (2.12)

This has the solution ols(ξ1:n, f1:n) = (ξT1:nξ1:n)−1ξT1:nf1:n. Note that (ξT1:nξ1:n)−1ξT1:n = ξ†1:n,

the pseudoinverse of ξ1:n.

In order for ols to be well-defined, ξ1:n must be full rank. This can fail to happen either

because n < D, or because ξi is sampled from some rank-deficient space. The latter setting

is especially relevant, as tangent spaces of submanifolds are by definition rank-deficient.To

address this problem, many popular regression softwares replace the inverse (ξT1:nξ1:n)−1 with

a pseudoinverse thresholded at small condition number κ =
λmax(ξT1:nξ1:n)

λmin(ξT1:nξ1:n)
. That is, small

eigenvalues of ξT1:nξ1:n are set to 0 and not inverted. This algorithmic substitution is standard
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in many widely used software packages (78; 150), and is comparable to principal components

regression (97) in that data is projected onto a principal subspace prior to ols.

2.4.2 Error-in-variables

Error-in-variables refers to a collection of statistical problems all variables are observed

with noise. This contrasts with the classical statistical regression paradigm in which only the

response variable is observed with noise. In Chapter 6 we describe a new method for local

linear regression in the presence of noise, and connect it to the error-in-variables manifold

estimation problem (155).

Ordinary least squares with error-in-variables exhibits several elementary challenges.

Given a linear model fε = ξβ + ε with E(ε) = 0 and Var(ξ) is full rank where ξ is observed as

ξε = ξ + εξ with E(εξ) = 0, the ordinary least squares estimator has expectation

E(ols(ξε, fε)) = (Var(ξ) + 2Cov(ξ, εξ) + Var(εξ))
−1(Var(ξ)β + Cov(ξ, εξ)β + Cov(ε, ξ) + Cov(ε, εξ)).

(2.13)

A proof is found in (154; 7). Even when Cov(εxi, ξε) = 0, this estimator has attenuation

bias, and non-zero covariances cause additional bias. These problems have motivated

application of alternative linear regression estimators such as total least squares (56).

2.4.3 Sparse linear regression

In Chapters 3 and 4 we introduce regularized group lasso regression for identifying sparse

parameterizations of manifolds, and in Chapter 5 we discuss the theoretical setting of these

methods in greater detail. Although our application of penalized regression is methodologically

novel, it intimately relates to existing literature.

Penalties on learned coefficients can encourage selection of sparse solutions (4). Two
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examples of suitable optimization problems for sparse linear regression are

arg min
β∈RD

‖β‖0 s.t. f1:n = ξ1:nβ (2.14)

arg min
β∈RD

‖β‖1 s.t. f1:n = ξ1:nβ. (2.15)

Program (2.15) is known as basis pursuit.

The l0 regularized Program 2.14, although sparse, is computationally challenging to solve.

In contrast, the seemingly combinatorial Program 2.15 is dual to the convex regularized lasso

regression program

arg min
β∈RD

‖f1:n − ξ1:nβ‖2
2 + λ‖β‖1. (2.16)

Here, dual means that, given a λ > 0, there exists a C(λ) > 0 such that the solution to

Program (2.16) gives the same minimizer as

arg min
β∈RD

‖β‖1 s.t. ‖f1:n − ξ1:nβ‖2
2 < C(λ), (2.17)

and that C(λ) and λ are inversely monotonically related on values from (0,∞). Therefore,

solving Program (2.16) at small λ approximates a solution to Program 2.15. All convex

regularized regression methods admit a form of this duality. The conditions under which

Program 2.15 recovers the same sparsity as Program 2.14 are well-studied (37; 134; 81).

In this thesis we use group lasso, a variant of the lasso that promotes joint sparsity

within groups but not between them (197). In the group lasso, the user defines a set of p

groups containing disjoint elements of the D features. An `2 penalty is applied to coefficients

within each group, while an `1 penalty is applied across groups. Thus, as λ is increased,

entire groups of coefficients enter the regularization path simultaneously. That is, given p

disjoint subsets Sj ⊂ [D],

β̂ = arg min
β∈RD

‖f1:n − ξ1:nβ‖2
2 +

p∑
j=1

‖βSj‖2, (2.18)

where βSj are the coefficients of the β vector belonging to the j-th group.
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2.4.4 Convergence of Laplacian estimation

Considerable literature exists on the spectral and pointwise constency of the sample Laplacian

L to the manifold Laplace-Beltrami operator ∆M (182; 24; 21; 49). However, the convergence

rate is substantially less clear. As stated in Singer (174),

1

ε
lim
n→∞

Lf1:N = ∆Mf +O(ε1/2) (2.19)

for samples 1 : n from an arbitrary function f on M, and L estimated using ξ1:n and ε. This

has motivated asymptotically shrinking the bandwidth ε at rates

Uniform density ε = O((
log n

n
)

1
d+4 ) Hein et al. (83) (2.20)

Non-uniform density ε = O((
log n√
n

)
1

2d+5 ) Shi (170) (2.21)

However, the relation of these convergence rates with noise in ξ is unclear. Coifman and

Lafon (49) suggests that ε should remain larger than the magnitude of the noise as a useful

heuristic. Although the role of noise has been explored for a variety of alternative manifold

estimators (137; 75; 66), we are not aware of any result that L is a consistent estimator of

∆M in the presence of noise.

2.4.5 Tangent space estimation

The convergence of local PCA algorithms for tangent space estimation has similar challenges

to that of the sample Laplacian in the presence of noise. The asymptotic rate of convergence

of the local PCA estimator is given Aamari and Levrard (6) in the noiseless case with respect

to the principal angle ∠ of the estimate T̂ξM and true tangent space TξM.

∠(T̂ξM, TξM) = O((
1

n
)
k−1
d ) (2.22)

where M is Ck-smooth. Unfortunately, this rate does not hold in the presence of non-

asymptotically vanishing noise, and the consistency of this estimator is an open question

(6; 155).
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2.5 Molecular dynamics simulations

A motivating application of this thesis is the study of molecular dynamics simulations (MDS)

using unsupervised learning (205; 160; 183). MDS is one of the principal tools in the study of

molecular systems. See Friesner (71) for a review of methods in this field. Such simulations

provide detailed information on the fluctuations and conformational changes of the simulated

system, and are routinely used to investigate the structure, dynamics and thermodynamics of

biological macromolecules and their complexes.

A molecular dynamics simulation generates samples ξ1:T from T states of the config-

uration space of the system. The distribution samples reflects the dynamics of the modelled

physical process as it moves through time. The accuracy of molecular simulation varies for

representing the ”true” underlying physical phenomenon varies depending on the complexity

of the phenonenom, as well as the type of simulation. One bifurcation is the choice of

simulating quantum Schrodinger versus classical Langevin dynamics, which historically have

been limited by their inability to predict quantum effects such as formation of bonds. At a

middle level of complexity, density functional theory represents the molecular system by its

Born-Oppenheimer approximation as atomic point masses, but with quantum dynamics (99).

This contrasts with the most precise but computationally expensive available approximation,

coupled cluster methods, in which electron correlations are explicitly modelled (200). The

data used in this thesis from Chmiela et al. (48) is from a solver that uses machine learning

to achieve coupled cluster accuracy with force fields. This is one of many recent methods

that use machine learning to increase simulation speed and accuracy (175).

Even though the vector of atomic coordinates can take any value, due to interatomic

interactions, the relative positions of atoms within the molecule lie near a low-dimensional

manifold. Performing manifold learning on these data separates the conformational changes,

modeled by the manifold, from the fluctuations represented by the “noise” around the

manifold. In other words, it disentagles the slow modes of dynamical systems from the

faster modes (205; 160; 183).
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Inspection of eigenfunctions of stochastic systems for physically-relevant observables has

a rich history (86; 198; 176). Depending on the spectral decomposition of the dynamical

differential operator, it may have a central slow manifold on which large scale dynamics evolve

accross relatively large lengths of time. See (38) for a more detailed accounting. Dynamical

systems can have center manifolds corresponding to the eigenfunctions of their corresponding

differential operators (136). However, in molecular dynamics, the Diffusion Maps embedding

and other non-linear dimension reduction methods are somewhat colloquially said to identify

slow modes, which refers to a related but non-rigorous notion of slowly evolving state. Such

modes are important for interrogation of these other items in infrequent metadynamics, in

which simulations are biased in the direction of collective variables (68; 205; 167). This can

occur along axes by biasing simulations along physical axes visually identified as parameterizing

the learned embedding, or directly moving in the direction of a differentiable embedding

(28; 112).

2.5.1 Shape space

Symmetry functions are a way of featurizing molecular geometries consisting of particle infor-

mation such as atomic positions so that the represented geometry is invariant to translation

and rotation (8; 48; 44). This is particularly useful when simplifying molecular structure to

consist of only atomic positions (? 64; 72). This invariance corresponds to the statistical

notion of shape - what remains of position when translation and rotation, and dilation are

ignored (103; 29; 101; 102; 115).

Definition 29. Denote the shape space of k points in Rm as Σk
m := (Rm)k/(E(m)×R+),

where E(m) is the Euclidean group of translations and rotations in a m dimensional space,

and R+ is a dilation factor relative to the mean position of the Na atoms.

The shape space is a Riemannian manifold of dimension mk − (2m + 1). Thus, in a

molecular dynamics simulation of Na atoms in R3, the intrinsic dimensionality of the shape

space is 3Na − 7.
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Figure 2.1: This diagram shows a simplified representation of the neighborhood of a point

in the shape space Σ3
2. Up to rotation, dilation, and translation, the shape of a triangle is

determined by two angles, so we can see that this is a two-dimensional space. The diagram

represents the logarithmic map of a region of Σ3
2, with the red line indicating the logarithmic

map of the subspace of right triangles, in a coordinate system given by α1 and α2, two angles

in the triangle.
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Chapter 3

MANIFOLD COORDINATES WITH PHYSICAL MEANING

Manifold embedding algorithms map high-dimensional data to coordinates in a much

lower-dimensional space. One of the aims of dimension reduction is to find intrinsic coordinates

that describe the data manifold. The coordinates returned by the embedding algorithm are

abstract, and finding their physical or domain-related meaning is not formalized and often

left to domain experts. This chapter studies the problem of recovering the meaning of the

new low-dimensional representation in a semi-automatic and principled fashion. We propose

a framework to explain embedding coordinates of a manifold as non-linear compositions of

functions from a user-defined dictionary. We then show that this problem can be set up as a

sparse linear Group Lasso recovery problem, and demonstrate its effectiveness on data.

3.1 Introduction

This chapter describes an algorithm - Manifold Flasso (Functional Lasso) or Manifold Lasso for

short - for interpreting the coordinates output by manifold learning (ML) algorithms. In the

sciences, one of the motivating goals of dimension reduction is the discovery of descriptors of

the data generating process. Linear dimension reduction algorithms like Principal Component

Analysis (PCA) and non-linear algorithms such as Diffusion Maps (49) are used to uncover

the variables describing large-scale properties of the interrogated system in applications from

genomics to astronomy (12).

An example of this approach occurs in the analysis of MDS data. It has been shown

empirically that manifolds approximate the high-dimensional distribution of simulated config-

urations configurations (58). Accordingly, application of manifold learning to find what are

in this setting called the collective coordinates has achieved great success.
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A key deficiency of such methods is with respect to the crucial notion of interpretability. A

precise definition of interpretability is lacking, but justifications for its study coalesce around

several important qualities. First, user-confidence in a learned representation may require

knowledge of what is actually being represented. Second, an interpretable representation may

be more likely to generalize, both intuitively, and in a statistical sense. Third, interpretable

models may require less data to learn. Finally, interpretability increases causal understanding

and ultimately the ability to intervene in a system to cause a desired effect. For this reason,

the use of manifold learning for analysis of high-dimensional systems is often accompanied

by a post-hoc analysis in which a domain-expert visually inspects the learned manifold for

correspondences with interesting features.

We begin our study by demonstrating the standard scientific approach to this problem for

several MD simulations in Figure 3.1. Figures 3.1a, 3.1b, and 3.1c show the toluene, ethanol,

and malonaldehyde molecules, consisting of Na = 15, 9 and 9 atoms, respectively, while 3.1d,

3.1e, 3.1h, 3.1f and 3.1i show the mappings of MD simulated trajectories into m = 2, 3 and 3

embedding coordinates by a manifold learning algorithm. Visual inspection shows that the

learned low-dimensional manifolds representing these configuration spaces are parameterized

(a technical term that we use here only intuitively) by certain functions of the molecular

configuration. Here, these functions are torsions - the angles formed as in Figure 3.1g by

the planes inscribing the first three and last three atoms of the colored lines joining four

atoms in Figures 3.1a, 3.1b, and 3.1c. Thus, the displayed torsions are collective coordinate

describing the slow motions of the toluene molecule, filtered out from the faster modes of

vibration by the manifold learning algorithm.
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(a) Toluene (b) Ethanol (c) Malonaldehyde

(d) (e) (f)

(g) Torsion example (h) (i)

Figure 3.1: Collective coordinates with physical meaning in MDS. 3.1a-3.1c Diagrams of

the toluene (C7H8), ethanol (C2H5OH), and malonaldehyde (C3H4O2) molecules, with the

carbon (C) atoms in grey, the oxygen (O) atoms in red, and the hydrogen (H) atoms in

white. Bonds defining important torsions gj are marked in orange and blue. The bond torsion

is the angle of the planes inscribing the first three and last three atoms on the line (3.1g).

3.1d Embedding of sampled configurations of toluene into m = 2 dimensions, showing a

manifold of d = 1. The color corresponds to the values of the orange torsion g1. 3.1e, 3.1h An

embedding of configurations of ethanol in m = 3 dimensions showing a manifold of dimension

d = 2 colored by the blue and orange torsions in Figure 3.1b. 3.1f, 3.1i: An embedding of

configurations of malonaldehyde in m = 3 dimensions showing a manifold of dimension d = 2

colored by the blue and orange torsions in Figure 3.1c.
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In this example, while the embedding algorithm was able to uncover the manifold structure

of the data, finding the physical meaning of the manifold coordinates was done by visual

inspection. In general, a scientist scans through many torsions and other functions of the

configuration, in order to find ones that can be identified with the abstract coordinates output

by a PCA or ML algorithm. Visual inspection for correspondences with features of interest

is pervasive in a variety of scientific fields (42; 87). The goal of this chapter is to put this

process on a formal basis and to devise a method for automating this identification, thus

removing the time consuming visual inspections from the shoulders of the scientist.

In our paradigm, the scientist inputs a dictionary G of functions to be considered as

possible collective coordinates. For the examples in Figure 3.1, G could be a set of candidate

torsions. We propose an algorithm that recovers a set of functions g1, . . . gs ∈ G, so that (g1:s)

is a local diffeomorphism to the output of the embedding algorithm; in other words, so that

(g1:s) are collective coordinates for the manifold. To keep the approach as general as possible,

we do not rely on a particular embedding algorithm, making only the minimal assumption

that it asymptotically produces a smooth embedding. We also do not assume a parametric

relationship between the embedding and the functions in the dictionary G. Instead, we only

assume that these functions are sufficiently smooth.

Our idea is to compose differentials of covariate dictionary functions to reconstruct

the differentials of the manifold embedding coordinates. By considering differentials, we

map our original non-linear, non-parametric problem to a linear sparse regression robust to

non-linearity in both the algorithm and the functional covariates.

The next section defines the problem formally, and Section 3.2 presents assumptions.

Section 3.3 introduces gradient estimators that enable the linearized method in Section 3.4.

Section 3.5 presents relevant theoretical results, and Section 3.6 presents experimental results

of our method on simple synthetic data. Section 3.7 then prepares for application of our

method to MDS data, including details about the dictionaries of interpretable functions,

adaptions necessary to make our method work in the rotation and translation invariant

molecular configuration space, while Section 3.8 presents results on molecular dynamics data.
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Section 3.9 discusses a limited amount of related work and suggests some adaptations that

will be explored in Chapters 4, 5, and 6. The bulk of discussion is deferred to Chapter 4.

3.2 Problem

We make a number of standard manifold learning assumptions. Observed data D = {ξi ∈

RD : i ∈ 1 . . . n} are sampled i.i.d. from a smooth manifold M of intrinsic dimension d

embedded in a feature space RD by the inclusion map. In this chapter, we call smooth any

function or manifold of class at least C3. We assume that the intrinsic dimension d of M is

known; for example, by having been estimated previously by one method in Kleindessner

and Luxburg (104). The manifold M is a Riemannian with Riemannian metric inherited

from the ambient space RD. Furthermore, we assume the existence of a smooth embedding

map φ : M → φ(M) ⊂ Rm, where typically m << D. That is, φ restricted to M is a

diffeomorphism onto its image, and φ(M) is a submanifold of Rm. We call the coordinates

φ(ξi) in this m dimensional ambient space the embedding coordinates φ1:m. In practice, the

mapping of the data D onto φ(D) represents the output of an embedding algorithm, and we

only have access to M and φ via D and its image φ(D).

Problem statement We are given a dictionary of user-defined and domain-related smooth

functions G = {g1, . . . gp, s.t. gj : U ⊆ RD → R}, where U is an open set containing M.

Our goal is to determine set S ⊂ [p] such that φ = h ◦ gS. Given coordinate functions

φ1:m and dictionary functions g1:p of a smooth manifold M, our goal is to recover a subset

gS of g1:p such that φ1:m = h ◦ gS without knowing h, we propose to recover the subset

gS by solving a set of dependent linear sparse recovery problems, one for each data point.

That is, we assume that φ(x) = h(gj1(x), . . . gjs(x)), where h : O ⊆ Rs → Rm is a smooth

function of s variables, defined on a open subset of Rs containing the ranges of gj1 , . . . gjs .

Let S = {j1, . . . js}, and gS = [gj1(x), . . . gjs(x)]T . We call this set the functional support

or explanation. In differential geometric terms, gS is related to finding coordinate systems,

charts and parameterizations of M. For example, in the toluene example, the functions in
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G are all the torsions in the molecule, s = 1, and gS = g1 is a chart for the 1-dimensional

manifold traced by the configurations. Hence, it is natural to associate s = d.

Indeterminacies Since the map φ given by the embedding algorithm is determined only up

to diffeomorphism, the map h cannot be uniquely determined, and it can therefore be overly

restrictive to assume a parametric form for h. Hence, this paper aims to find the support

set S while circumventing the estimation of h. Indeterminacies w.r.t. the support S itself

are also possible. For instance, the support S may not be unique whenever the relationship

g1 = t(g2), where t is a smooth function, holds for two functions g1, g2 ∈ G. In Section 3.5

from (130) we give conditions under which S can be recovered uniquely; intuitively, they

consist of functional independencies between the functions in G. It is sufficient to assume

that that the dictionary G is a functionally independent set, i.e. there is no g ∈ G that

can be obtained as a smooth function of other functions in G.

3.3 Gradients on manifolds

The main idea of our approach is to exploit that, for any differentiable functions f, g, h, when

f = h◦g, the differentials Df,Dh,Dg at any point are in the linear relationship Df = DhDg.

Thus, the functional relationship φ = h ◦ gS will be written as the linear relationship

Dφ = DhDgS, or, in other words, in terms of gradients gradM φ1:m and gradM g1:p. Section

3.4 will explain how to identify the functional support using these gradients. Therefore, we

review the definition of gradient on a manifold, and explain how to convert the analytically

available gradients of the dictionary functions to gradients of functions on the manifold. We

also introduce an estimator for the gradients of the embedding coordinates, which are not

analytically available for our Diffusion Maps embeddings.

3.3.1 Gradients and coordinate systems

Our algorithm regresses the gradients of the embedding coordinate functions against the

gradients of the dictionary functions. Both sets of gradients are with respect to the manifold
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M, and so this requires calculating or estimating various gradients in the same d-dimensional

coordinate system.

By assumption we have two Euclidean spaces RD and Rm, in which manifolds M and

φ(M) of dimension d are embedded. Denote gradients w.r.t. the Euclidean coordinate

systems in RD and Rm by ∇ξ and ∇φ, respectively. Since our interest is in functions on

manifolds, we also recall the gradient of a function on a manifold M from Definition 2.9.

We denote gradients expressed in bases TMi in TξiM and T φi in Tφ(ξi)φ(M) by gradTMi ,g f

and gradTφi ,g
f respectively. For a manifold M which is a submanifold of RD, we denote by

gradTMi (ξ) the value of gradTMi ,id(ξ) w.r.t. the ambient identity metric id inherited from

RD.Note that in coordinates, gradM f depends on the metric g, but at the same time gradM f

as a linear operator on TξiM is invariant to the metric. Hence, the left hand side must also

be invariant to the metric. It follows that Df(ξ)u = uT gradTMi f(ξ) for any u ∈ TξM, and,

furthermore, that gradTMi ,g f = G−1
i gradTMi f for any other Riemannian metric g.

3.3.2 Calculating the gradients of the dictionary functions

Our goal is construct matrices Xi, for i = 1, . . . n, with p columns representing the gradients

of the p dictionary functions in basis TMi :

Xi := [gradTMi gj(ξi)]j=1:p ∈ Rd×p. (3.1)

Denote X = [Xi]i=1:n - a n × d × p dimensional array. We will index individual gradient

vectors in this array as Xi.j. The gradients ∇ξg
j(ξi) are known analytically, by assumption.

By definition, in any basis TMi ∈ RD×d of TξiM,

gradTMi gj(ξi) = (TMi )T∇ξg
j(ξi). (3.2)

In other words, gradTMi gj is the projection of ∇ξg
j on the orthonormal basis TMi . We

estimate these bases with the wlpca algorithm described in Section 2.3.
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3.3.3 Estimating gradients of coordinate functions

In contrast, the gradients of φk are often not analytically available, and φk is known only

through its values at the data points. We introduce an estimator of these gradients based on

the notion of vector pull-back between tangent spaces. Instead of estimating these gradients

merely from differences φk(ξi)− φk(ξi′) between neighboring points, we first estimate their

values in Tφ(ξi)φ(M), where they have a simple expression, and then pull them back in the

coordinate system TMi . This estimation method is novel, and of some independent interest.

The PullBackDPhi Algorithm takes as inputs the local neighborhoods Ξi, Φi of point ξi

in the original and embedding spaces, respectively, the basis TMi of TξiM, and the row of the

Laplacian matrix corresponding to i, Li,Ni . From this local information, the algorithm first

computes a basis for the tangent space Tφ(ξi)φ(M), obtains the gradients of the coordinate

functions φ in this basis by projection, and finally pulls them back in the coordinate system

given by TMi by solving a least squares regression.

Estimating T φ(M) using RMetric As an alternative to wlpca, we estimate the

Tφ(ξi)φ(M) using the Riemannian metric g, expressed as Gi in the coordinates φ at ξi (? ).

Recall our assumption that (M, id) is a Riemannian manifold, with the metric id induced

from RD. With this we associate to φ(M) a Riemannian metric g which preserves the

geometry of (M, id). This metric - the pushforward metric - is defined by

〈u, v〉g = 〈Dφ−1(ξ)u,Dφ−1(ξ)v〉 for all u, v ∈ Tφ(ξ)φ(M). (3.3)

In the above, Dφ−1(ξ) is the pull-back operator that maps vectors from Tφ(ξ)φ(M) to TξM,

and 〈, 〉 the Euclidean scalar product. The matrices Gi can be estimated by the algorithm

RMetric given in Section 2.3. The algorithm uses only local information, and thus can be

run efficiently using the Laplacian, the neighborhood graph, and local embedding coordinate

matrices. The theoretical rank of Gi equals d and the d principal eigenvectors of Gi represent

an orthonormal basis T φi ∈ Rm×d of Tφ(ξi)φ(M).

We use the output of this algorithm to estimate Dφ(ξ). Trivially, the gradients of φ1:m in
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the embedding space Rm, are equal to the m basis vectors of Rm, i.e. ∇φφ
1:m = Im. Therefore

[gradTφi
φk(ξi)]

m
k=1 = (T φi )T Im. (3.4)

In order to bring these gradients into the same coordinate system as our dictionary

functions, we define the following matrices, with ProjT v denoting the Euclidean projection

of vector v onto subspace T .

Yi = [yik]
m
k=1 = [gradTMi φk(ξi)]

m
k=1 ∈ Rd×m, (3.5)

Ai =
[
ProjTξiM

(ξi′ − ξi)
]
i′∈Ni

∈ Rd×ki , (3.6)

Bi = [φ(ξi′)− φ(ξi)]i′∈Ni ∈ Rm×ki , (3.7)

B̃i =
[
ProjTφ(ξi)φ(M) [φ(ξi′)− φ(ξi)]

]
i′∈Ni

∈ Rd×ki . (3.8)

The columns of Ai and Yi are vectors in TξiM, the columns of Bi are in Rm and the columns

of B̃i are in Tφ(ξi)φ(M). Note that when m = d, Bi = B̃i. The columns of Ai and B̃i are in

correspondence because they represent namely the logarithmic maps of point i′ with respect

to point i (approximately) the same vectors in two coordinate systems of TξiM and φ(M).

The accuracy of this approximation is given by the following proposition Meila et al. (130).

Proposition 30.

(gradTMi φk(ξi))
TAi = (gradTφi

φk(ξi))
T B̃i + o(ε). (3.9)

Our estimator uses this correspondence in order to pull back the gradient of the coordinate

function φk into the coordinates TMi . We calculate the value of the differential Dφk on

the columns of B̃i in the coordinate system given by φ, and equate these values with

gradTMi φk applied to the columns of Ai. In coordinates, Ai = (TMi )T (Ξi − ξi1
T
ki

) and

B̃i = (T φi )T (Φi − φ(ξi)1
T
ki

). These matrices are computed by Steps 2 and 3 of Algorithm

PullBackDPhi, while Yi contains the gradients we want to estimate. Recalling that

Yi = [gradTMi φk(ξi)]k=1:m we obtain

Y T
i Ai = [(T φi )T Im]T (T φi )TBi + o(rN). (3.10)
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We solve this linear system in the least squares sense

Yi = arg min
Y ∈Rd×m

‖ATi Y −BT
i T

φ
i (T φi )T‖2

2 (3.11)

to obtain

Yi = A†iB
T
i T

φ
i (T φi )T . (3.12)

This solution is the regression of the columns of BiT
φ
i (T φi )T on the columns of Ai at each

data point ξi. We call estimator (3.12) the pullback gradient estimator because of its

implicit invocation of the notion of vector pullback.

To justify this name, we note that by equation (3.3), for any function f : φ(M)→ R,

〈Dφ−1(φ(ξ))u,Dφ−1(φ(ξ)) gradφ(M) f(ξ)〉 = 〈u, gradφ(M) f(φ(ξ))〉g, for all u ∈ Tφ(ξi)φ(M)

(3.13)

where g is the push-forward metric associated with φ. Using this fact, and the invariance

of gradient to metric, we have that, for any w ∈ TξiM, Dφ−1(φ(ξ)) gradφ(M) f(φ(ξ)) =

gradM(f ◦ φ)(ξ) for any smooth function f : φ(M) → R. The above claims give us

〈Dφ−1(φ(ξ))u, gradM(f ◦φ)(ξ)〉 = 〈u, gradφ(M) f(φ(ξ))〉 where u ∈ Tφ(ξi)φ(M) is an arbitrary

tangent vector. In coordinates T φi and TMi , we can write this equivalence as

〈Dφ−1(φ(ξ))u, gradTMi (f ◦ φ)(ξ)〉 = 〈u, gradTφi
f(φ(ξ))〉. (3.14)

If we then replace values of (T φi )T ek, (TMi )T (ξi′−ξi) and (T φi )T (φ(ξi′)−φ(ξi)) for gradTφi
φk(φ(ξi)),

Dφ−1(φ(ξi))u and u, respectively, we obtain (3.10).

PullBackDPhi( local data Ξi, local embedding coordinates Φi, basis TMi (Optional: T φi or

Laplacian row Li,Ni , intrinsic dimension d))

1: Compute pushforward metric eigendecomposition Gi, T
φ
i ← RMetric(Li,Ni ,Φi, d).

2: Compute Bi ← (ΦT
i − φ(ξi)1

T
ki

)

3: Compute Ai ← (TMi )T (ΞT
i − ξi1Tki)

4: Calculate Yi ← A†iB
T
i T

φ
i (T φi )T by solving linear system (3.11)

5: Output Yi



36

3.4 The ManifoldLasso algorithm

Gradient estimators form the preliminary steps of the main ManifoldLasso algorithm,

which takes as input data D sampled from an unknown manifold M, a dictionary G of

functions defined on M (or alternatively on an open subset of the ambient space RD that

containsM), and an embedding φ(D) ⊂ Rm, and outputs a set S of indices in G, representing

the functions in G that explainM. The first part of the algorithm contains preparatory steps

for geometric analysis covered in Section 2.3. Steps 1 and 2 construct the neighborhood graph,

kernel matrix, and Laplacian matrix used for manifold learning and tangent space estimation.

The second part of ManifoldLasso calculates the necessary gradients; this comprises Steps

8–10. In Step 8, we estimate orthogonal bases of tangent subspaces by the wlpca algorithm

described in Section 2.3. The gradients of the dictionary functions w.r.t. the manifold in

bases TMi are then obtained as columns of the d× p matrix Xi in Steps 4, 5, and 9. These

operations are described in detail in Section 3.3.2. In Step 10, the gradients at ξi of the

coordinates φ1:m, also in bases TMi , are calculated as columns of the d×m matrix Yi by the

PullBackDPhi algorithm described in Section 3.3.3. In the last part of ManifoldLasso,

Step 14 finds the support S by solving the sparse linear regression. A GroupLasso algorithm

is called to perform the sparse regression of the manifold coordinates’ gradients Y1:n on the

gradients of the dictionary functions, represented by X1:n. The indices of those dictionary

functions whose β coefficients are not identically null represent the support set S = supp β.

This is described in Section 3.4.1. Scaling of functions is addressed through normalization in

Steps 5 and 12; this procedure is described in more detail in Section 3.4.3.
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Algorithm 4 ManifoldLasso(Dataset D, dictionary G, embedding coordinates φ(D),

intrinsic dimension d, kernel bandwidth ε, neighborhood cutoff size r, regularization parameter

λ)

1: Construct Ni for i = 1 : n; i′ ∈ Ni iff ‖ξi′ − ξi‖ ≤ r, and local data matrices Ξ1:n

2: Construct kernel matrix and Laplacian K,L ←Laplacian(N1:n,Ξ1:n, ε)

3: [Optionally compute embedding: φ(ξ1:n)←EmbeddingAlg(D,N1:n,m, . . .)]

4: for j = 1, 2, . . . p do

5: Compute ∇ξg
j(ξi) for i = 1, . . . n

6: Compute ζ2
j by (3.21) and normalize ∇ξg

j(ξi)← (1/ζj)∇ξg
j(ξi) for i = 1, . . . n

7: end for

8: for i = 1, 2, . . . n do

9: Compute basis TMi ←wlpca(Ξi, Ki,Ni , d)

10: Project Xi.. ← (TMi )T∇ξg
1:p

11: Compute Yi.. ←PullBackDPhi(Ξi,Φi, T
M
i , Li,Ni , d)

12: end for

13: Compute ζ2
k ← 1

n

∑n
i=1 ‖Yi.k‖2 (i.e. (3.20)), for k = 1, . . .m and

normalize Yi ← Yi diag{1/ζ1:m}, for i = 1, . . . n.

14: β ← GroupLasso(X, Y, λ
√
mn)

15: Output S = supp β

There are several optional steps and substitutions in this algorithm. An embedding can

be computed in Step 3, or input separately by the user - we denote this step generically as

EmbeddingAlg. Also, although we explicitly describe tangent space estimation methods

of both TξiM and Tφ(ξi)φ(M) in our algorithms, other approaches to estimate them may be

used. Further variations and extensions are discussed in Section 3.9.
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3.4.1 The GroupLasso formulation

We resolve the functional support problem by applying a group lasso to the estimated

gradients. Recall that Xi defined in (3.1) contains the gradients of the dictionary functions

gj, and that Yi.k ∈ Rd, the k-th column of Yi.., represents the coordinates of gradM φk(ξi) in

the chosen basis of TξiM. Further, given the assumption that φ = h ◦ gS, let hk be the k-th

component of the vector valued function h, and denote

βijk =
∂hk

∂gj
(gj(ξi)) (3.15)

β = [βijk]
n,pm
i,k,j=1 (3.16)

(3.17)

Then, from the identity gradM φk = gradM(hk ◦ gS) and the chain rule, one obtains the

following linear model.

Yik =

p∑
j=1

Xi.jβijk + εik = Xi..βi.k + εik for all i = 1 : n, and k = 1 : m. (3.18)

In the above regression of Y1:n on X1:n, βi.k is the set of regression coefficients of yik onto

Xi. If there is some h such that φ = h ◦ gS, then the non-zero βijk coefficients are estimates

of ∂hk

∂gj
(ξi) for j ∈ S. Further, β.j. represents the regression coefficients corresponding to the

effect of function gj; therefore, the zero β.j. matrices indicate that j 6∈ S. Hence, in each

βi.k, only |S| elements are non-zero. The term εik is added to account for noise or model

misspecification.

The key characteristic of the functional support that we leverage is that the same set

S of coefficients will be non-zero for all i and k. Since solving Equation 3.15 for β is

underdetermined, we use a sparsity inducing regularization that simultaneously zeros out

entire βj vectors. Thus, our problem can be naturally expressed as a Group Lasso (197), with

p groups of size mn, consisting of the β1:p groups of coefficients of gradM g1:p. To solve it we

minimize the following objective function w.r.t. β:

JM,λ(X, Y, β) =
1

2

n∑
i=1

m∑
k=1

‖Yi.k −Xi..βi.k‖2
2 +

λ√
mn

p∑
j=1

‖β.j.‖F . (3.19)
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The first term of the objective is the least squares loss of regressing Y1:n onto X1:n. The

second is a regularization term, which penalizes each group βj by its Euclidean norm. This

encourages most β.j. groups to be identically 0. The normalization of the regularization

coefficient λ by the group size mn follows Yuan and Lin (197) and takes into account that

the least squares loss also grows proportionally to mn. The use of Group Lasso for sparse

functional regression was introduced in Meila et al. (130).

Note that we can consider objective 3.19 to be a group lasso problem with block diagonal

X and Y . It is convex in β and invariant to the change of basis TMi . Let T̃Mi = TMi U be

a different basis, with U ∈ Rd×d a unitary matrix. Then, Ỹik. = UTYik., X̃i = UTXi, and

‖Ỹik − X̃i..βi.k‖2
2 = ‖Yi.k −Xi..βi.k‖2 for any βi.k ∈ Rp.

3.4.2 Computation

The first two steps of ManifoldLasso are construction of the neighborhood graph and

estimation of the Laplacian L. As stated in Section 2.3, L is a sparse matrix, hence

RMetric can be run efficiently by only passing values corresponding to one neighborhood at

a time. Note that in our examples and experiments, Diffusion Maps is our chosen embedding

algorithm, so the neighborhoods and Laplacian are already available, though in general this is

not the case. The second part of the algorithm estimates the gradients and constructs arrays

Y1:n, X1:n. The gradient estimation runtime, with Cholesky decomposition-based solvers, is

O(qd2 + nd3) where q =
∑n

i=1 ki is the number of edges in the neighborhood graph. The last

major step is a call to the GroupLasso solver, which estimates the support S of φ. The

computation time of each iteration in GroupLasso is O(nmpd). Note that when using a

standard group lasso solver, the computation time is O(n2m2pd) due to the block-diagonal

structure of the problem implicit in flattening the n by p by d covariate tensor. We therefore

use our own implementation of proximal FISTA to solve this problem (32; 96). Finally, we

typically perform the ’for’ loop over a subset I ⊂ [n] of the original data. This replaces the n

in the computation time with the smaller factor |I|, while still enabling the embedding and

the tangent spaces to be learned from the entire dataset. embedding. For each i, computing
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the local mean is O(kiD) and the tangent space is O(kiD
2 + k3

i ).

3.4.3 Normalization

As with many sparse regression methods, normalization is necessary to balance the relative

influence of dictionary elements and embedding coordinates. Multiplying gj by a non-zero

constant and dividing its corresponding β.j. by the same constant leaves the reconstruction

error of all y’s invariant, but affects the norm ‖β.j.‖F . Therefore, the relative scaling of the

dictionary functions gj can influence the recovered support S, by favoring the dictionary

functions whose columns have larger norm. A similar effect is present if a particular embedding

coordinate φk is rescaled by a constant. For example, multiplying a certain φk by a number

close to zero will cause the penalty accrued by learned coefficients for that coordinate to be

smaller than for the other coefficients, and for that φk to dominate support recovery.

We therefore normalize all gradTMi φ1:m and gradTMi g1:p as follows. Denote f a function

onM, which can be either a coordinate function or a dictionary function. When f is defined

on M, but not outside M, we calculate the normalizing constant

ζ2 =
1

n

n∑
i=1

‖ gradTMi f(ξi)‖2
2. (3.20)

Then we set f ← f/ζ. The above ζ is the finite sample version of ‖ gradM f‖L2(M), integrated

w.r.t. the data density onM. We apply this normalization to coordinate functions φk, but it

could also be applied to functions gj when they are defined only on M.

When function f is defined on a neighborhood around M in RD, we compute the

normalizing constant with respect to ∇ξf . That is,

ζ2 =
1

n

n∑
i=1

‖∇ξf(ξi)‖2. (3.21)

Then, once again, we set f ← f/ζ. We apply this normalization to dictionary functions gj.

This favors dictionary functions whose gradients are nearly tangent to the manifold M, and

penalizes the gj’s which have large gradient components perpendicular to M.
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3.4.4 Tuning

Tuning parameters are often selected by cross-validation in Lasso-type problems. However,

in this setting, the recovered support generally span the tangent space, and as discussed in

Section 3.5, we are theoretically motivated to identify a size d support. Since the cardinality

of the support decreases as the tuning parameter λ is increased, we thus base our choice of

λ on matching the cardinality of the support to d. Sufficient conditions for this estimation

strategy are given in Section 3.5. We perform a binary search over λ in the range [0, λmax] to

identify the optimal λ, which we call λ0.

Proposition 31. Let λmax := minλ>0 arg min JM,λ(X, Y, β) = 0, the theoretical maximum λ

value.

λmax = max
j∈[p]

(
n∑
i=1

m∑
k=1

(gradTMi gj(ξi))
T (gradTMi φm(ξi)))

1/2. (3.22)

Proof. Consider partial derivatives β′ :=
∂JM,λ(X,Y,β)

β
. At all λ ≥ λmax, the minimizer of

objective JM,λ(X, Y, β) satisfies β = 0, by construction. Differentiating JM,λ(X, Y, β), we

see that ‖β′.j.‖ = (
∑n

i=1

∑m
k=1(gradTMi gj(ξi))

T (gradTMi φm(ξi)))
1/2 + λ. Thus, when λ <∑n

i=1

∑m
k=1(gradTMi gj(ξi))

T (gradTMi φm(ξi)))
1/2, ‖β.j.‖ > 0.

3.5 Theory

Theoretical analyses motivating the pullback estimator, sufficient conditions for functional

support recovery, and convergence rate analyses are provided in (130). This section reviews

and comments on these results. These comments motivate the alternative sparse estimation

methodology in Chapter 5, as well as the gradient and tangent space estimators intoduced in

Chapter 6.

3.5.1 Approximating the logarithmic map by orthogonal projection

The logarithmic map logξ ξ
′ of a neighboring point ξ′ ∈ M w.r.t. ξ plays a central role

in gradient estimation since it gives the mathematical framework for relating distances to
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neighbors sampled from M to vectors in TξM. In (130), the accuracy of the approximation

to logarithmic map by orthogonal projection in section 3.3.3 is shown to be a corollary of

Proposition 32. For all ξ not on the boundary of M and all ξ′ such that ‖ξ′ − ξ‖≤ r for

some r = Cε, it holds that

‖ProjTξM(ξ′ − ξ)− logξ ξ
′‖ = o(ε) (3.23)

‖ProjTφ(ξ)φ(M)(φ(ξ′)− φ(ξ))− logφ(ξ) φ(ξ′)‖ = o(ε). (3.24)

However, not all gradient estimators require projection onto the tangent space in all the

senses we have required. Given coordinates Tφ(ξ)M , just as the projection T φφ(ξ)

T
(φ(ξ′)−φ(ξ))

is an approximation to logφ(ξ) φ(ξ′) in the coordinates of T φφ(ξ), φ(ξ′) − φ(ξ) is itself an

approximation to T φφ(ξ) logφ(ξ) φ(ξ′). Since this is actually what is being approximated by

columns of Bi, the accuracy of this approximation can be bounded instead. We therefore

show

Proposition 33. ‖(φ(ξ′)− φ(ξ))− T φφ(ξ) logφ(ξ) φ(ξ′)‖ = o(ε).

Proof. Since φ(M) is a submanifold of Rm, within a neighborhood, we can write it in

coordinates as (u, p(u)) where u = [u1 . . . ud] are coordinates of the tangent space Tφ(ξ)φ(M)

within Rm and p(u) is a map from Rd → Rm−d. Within the same neighborhood define

p̃(u) = [u, p(u)] as well. Then,

φ(ξ′) = p̃(T
φ(M)
φ(ξ)

T
φ(ξ′)). (3.25)

Now each of the m component functions of p̃ has Taylor expansion

p̃k(Projφ(ξ′)) = φ(ξ) +∇p̃k(φ(ξ))
T

(T
φ(M)
φ(ξ)

T
(φ(ξ′)− φ(ξ))) + o(ε) (3.26)

Thus,

‖φ(ξ′)− T φ(M)
φ(ξ) T

φ(M)
φ(ξ)

T
φ(ξ′)‖ (3.27)

= ‖φ(ξ) +Dp̃(φ(ξ))(T
φ(M)
φ(ξ)

T
(φ(ξ′)− φ(ξ)))− T φ(M)

φ(ξ) T
φ(M)
φ(ξ)

T
φ(ξ′)‖+ o(r) (3.28)

= ‖Dp̃(φ(ξ))(T
φ(M)
φ(ξ)

T
(φ(ξ′)))− T φ(M)

φ(ξ) T
φ(M)
φ(ξ)

T
φ(ξ′)‖+ o(r) (3.29)

= o(r). (3.30)
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To show the proposition, we combine this result with the following using the triangle

inequality. Assume w.l.o.g. that logφ(ξ) φ(ξ′) is given in the coordinates of T
φ(M)
φ(ξ) . Following

the proof of in Appendix A of (130), ‖T φφ(ξ)

T
(φ(ξ′) − φ(ξ)) − logφ(ξ) φ(ξ′)‖ = o(r). Thus,

‖T φφ(ξ)T
φ
φ(ξ)

T
(φ(ξ′)− φ(ξ))− T φφ(ξ) logφ(ξ) φ(ξ′)‖ = o(r). Since T φφ(ξ)T

φ
φ(ξ)

T
φ(ξ) = φ(ξ), this can

be rewritten as ‖T φφ(ξ)T
φ
φ(ξ)

T
φ(ξ′)− φ(ξ)− T φφ(ξ) logφ(ξ) φ(ξ′)‖ = o(r).

In Chapter 6, we will discuss a related gradient estimator that does not project onto

Tφ(ξ)φ(M) prior to solving a linear system (17).

3.5.2 Functional Support

Our definition of functional support raises the question of what conditions guarantee existence

and uniqueness of such as gS within G. These conditions are functional dependence conditions,

defined as follows.

Definition 34. We say that a set of functions gS on a metric space X is C` functionally

dependent at ξ if there is a subset S ′ ⊂ S, S ′ 6= S, a function τ : R|S′| → R|S| and a

neighborhood U around ξ such that

• gS = τ ◦ gS′ on U

• τ is C` (smooth) globally on gS
′
(U) ⊂ R|S′|

• y − τ(yS
′
) 6≡ 0 for y in any neighborhood U ⊂ R|S| containing gS(ξ), where y =

(y1, · · · , y|S|) ∈ R|S|, yS′ = (yi)i∈S′ ∈ R|S′|.

We call a set of functions gS functionally independent if it does not contain any subset

S ′ s.t. gS = τ(gS
′
).

If φ = h ◦ gS and gS is functionally independent, then it is a minimal explanation for the

manifold. For our problem, this definition applies in the following way.
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Proposition 35. Let G and gS be defined as before. M is a smooth manifold with dimension

d embedded in RD. Suppose that ψ : M ⊂ RD → Rm is also an embedding of M and has

a decomposition ψ(ξ) = h ◦ gS(ξ) for every ξ ∈ M where h is smooth. If the dictionary gS

contains d functions denoted by gS
′
, that are smooth functionally independent on M, then

there exists a h̃ such that ψ = h̃ ◦ gS′ on every ξ ∈M. Here, the function h̃ is smooth almost

everywhere in the range of gS
′
.

The first important feature of this proposition is that, if we have a cardinality d functionally

independent set gS
′

within our dictionary, we can write φ(ξ) = h(gS
′
(ξ)). By the definition

of functional independence, there does not exist a lower-cardinality subset gS
′′

such that

gS
′

= τ ◦ gS′′ . Therefore, there cannot exist a h′ = h ◦ τ satisfying φ = h′ ◦ gS′′ . Thus, the set

gS
′

is minimal.

The other important feature of the proposition is the cardinality d of the set gS
′
. The

reason that this cardinality is required to be equal to the dimension M is that the gradients

of gS
′

must span TξM in order for the implicit function theorem to show existence of h.

Proposition 36. Suppose M is a d−dimensional smooth manifold and gS :M→ Rd are

d C` functions. Suppose gS(M) has a positive measure in Rd. Then they are functionally

independent on M iff rankDgS(ξ) = d everywhere on M except for a closed subset W ⊂M

with no interior point.

This requirement gives us a practical condition for checking for the presence of such

a set. Since, by Sard’s Theorem, the measure of W is 0, so if we estimate DgS =

[gradM g1, . . . gradM gd], we can check if this rank condition is satisfied for any gS ⊂ G.

The existence of such functions gS with rank d almost everywhere is guaranteed by the fact

that a single coordinate chart can cover any compact manifold except for a set of measure

zero, known as the cut-locus of the chart (169; 25). One can, for example, find one function

explaining the whole circle S1 embedded in R2 except one point. Thus, these theoretical

results should be considered conditions on the dictionary, rather than the manifold itself.
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3.5.3 Convergence analysis

In addition to such asymptotic infinite sample existence results, one can derive sufficient

conditions for finding a suitable functional support gS using Program (3.19). Since, by

Proposition 36, gradients [gradTMi g1(ξi) . . . gradTMi gd(ξi)] must span the tangent space TξiM,

these conditions are related to the conditions for which Program 2.15 recovers a minimizer of

2.14, and Lasso theory for finding such a solution can be adapted to our setting Wainwright

(187); Tibshirani (180). These highlight the connections of dictionary functions collinearity

to error resulting from estimation of gradTMi gj and gradTMi φk.

According to (144), a particular group S will be recovered by Group Lasso methods, if

(i) it is close to perpendicular to the linear subspace generated by all other groups, and (ii)

group features in S are close to orthogonal. The first condition will be discussed later in this

Section. As for condition (ii), we note that if a set S ′ is not full rank on M, the Jacobian

DgS
′

will be ill-conditioned at the data near the critical points, which will result in very

large βijk values. Hence, such a subset will be heavily penalized. Similarly, features gj which

vary much in a direction normal to M will have, due to the gradient normalization, smaller

values for gradTMi gj; therefore their βj coefficients will be large relatively to the coefficients

of functions whose gradients are tangent to M.

We introduce several relevant quantitites. As an abuse of notation, rearrange X into

Rn×p×d. The incoherence of G is defined as

µ = max
i=1:n,j∈[p],j′∈S,j 6=j′

|XT
i.jXi.j′|

‖Xi.j‖‖Xi.j′‖
. (3.31)

Note that this definition differs in several ways from the standard definition of incoherence

as maxi maxj,j′∈[p] |XT
i.jXi.j′ |. Since the values of Xij. consist of gradients after projection, we

assume the normalizations in Section 3.4.3. Second, as we have conditioned on the set S, it

is not necessary to require that the gradients outside the support S be incoherent. Finally,

the due to the group structure being shared across data points, µ is a maxima across [n].
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Assuming that that the data Y1:n ∈ Rd satisfy the noise model

Yi =

p∑
j=1

β∗ijXi.j + εi for i ∈ [n]. (3.32)

for error associated with estimation of the embedding and tangent spaces, we also define the

noise level σ

max
i∈[n]
‖εi‖2

2 = dσ2. (3.33)

We now claim the following results relating coherence and colinearity with support recovery

and coefficient estimation.

Proposition 37. Assume that Model (3.32) holds, and that
∑n

i=1 ||Xi.j||2 = γ2
j for all

j = 1 : p. Let γmax = maxj 6∈S γj, κS = maxi=1:n
maxj∈S ‖Xi.j‖
minj∈S ‖Xi.j‖

. Denote by β̄ the minimizer of

Objective 3.19 for some λ > 0. If 1− (s− 1)µ > 0 and

γmax

(
µ

1− (s− 1)µ

κS
minni=1 minj′∈S ‖Xi.j′‖

+
σ
√
d

λ
√
n

)
≤ 1 (3.34)

then β̄ij = 0 for j 6∈ S and all i = 1, . . . n.

The factor µ
1−(s−1)µ

measures the near-orthogonality of the gradients in S, while the factors

(minni=1 minj′∈S ‖Xi.j′‖)−1 and κS measure the conditioning of S with respect to the gradient

norms. They are optimal when all gradients in S are bounded away from 0, and when their

sizes are relatively equal. The second term depends on the noise amplitude, and can be made

arbitrarily small by increasing the regularization coefficient λ. The drawback of increasing

λ in this manner is that coefficient estimates are increasingly biased. However, given the

following conditions, exact support recovery is guaranteed.

Proposition 38. Assume that Model 3.32 and condition (3.34) hold. Let κ = µ
1−(s−1)µ

κS
minni=1 minj′∈S ‖Xi.j′‖

and γS = ‖X..S‖F . Denote by β̂ the minimizer of Objective 3.19 for some λ > 0. If (1)

λ = c γmaxσ
√
d

1−κγmax
, c > 1, and (2) ‖β∗.j.‖ > σ

√
d(γmax + γS) + λ(1 +

√
s) for all j ∈ S, then the

support S is recovered exactly and

‖β̂.j. − β∗.j.‖F < σ
√
d(γmax + γS) + λ(1 +

√
s) = σ

√
dγmax

[
1 + γS/γmax + c

1 +
√
s

1− κγmax

]
for all j ∈ S.

(3.35)
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These results are similar to literature on undercomplete sparse coding, in which a typical

theoretical objective is guaranteeing so-called sparsistency and consistency with respect to

the oracle support. However, in practice these results can be challenged by violations of

support recovery conditions. We address these issues in Chapter 5.

3.6 Experiments 1: Set-up and Swiss Roll

We demonstrate the ability of ManifoldLasso to identify explanations of manifolds and

their embedding coordinates in several toy and scientific manifold learning problems. This

section describes the general experimental procedure for all experiments, as well as results for

the classic SwissRoll dataset. Subsequently, Section 3.7 describes adjustments necessary

for analyzing MD data, and Section 3.8 gives toy and scientific molecular data analyses. 1

3.6.1 Experimental setup

For all experiments, the data consist of n data points in D dimensions, as well an embedding

φ1:m(D). We assume access to the manifold dimension d, a kernel bandwidth ε used in the

estimation of the tangent spaces, and p dictionary functions. Except where otherwise specified,

m and ε are used in the preliminary step of generating embeddings φ1:m using the Diffusion

Maps algorithm as EmbeddingAlg. ManifoldLasso is applied to a uniformly random

subset of size n′ = |I| and this process is repeated ω number of times. These parameters are

passed to the Laplacian, wlpca, RMetric, and PullBackDPhi algorithms, and are

summarized in Table 3.1. The regularization parameter λ ranges over [0, λmax] as described

in Section 3.4.4.

3.6.2 Swiss roll

We begin our experimental study by demonstrating that ManifoldLasso is invariant to the

choice of embedding algorithm on the classic unpunctured SwissRoll dataset. This dataset

1Code is available at https://github.com/sjkoelle/montlake/tree/master/montlake

https://github.com/sjkoelle/montlake/tree/master/montlake
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Dataset n Na D d εN m n′ p ω

SwissRoll 10000 NA 49 2 .18 2 100 51 1

RigidEthanol 10000 9 50 2 3.5 3 100 12 25

Ethanol 50000 9 50 2 3.5 3 100 12 25

Malonaldehyde 50000 9 50 2 3.5 3 100 12 25

Toluene 50000 15 50 1 1.9 2 100 30 25

Ethanol 50000 9 50 2 3.5 3 100 756 25

Malonaldehyde 50000 9 50 2 3.5 3 100 756 25

Table 3.1: Summary of experiments. SwissRoll and RigidEthanol are toy data, while

Toluene, Ethanol, and Malonaldehyde are from quantum molecular dynamics simulations

by (47). The columns list the following experimental parameters: n is the sample size for

manifold embedding, Na is the number of atoms in the molecule, D is the dimension of ξ, d

is the intrinsic dimension, εN is the kernel bandwidth, m is the embedding dimension, n′ is

the size of the subsample used for ManifoldLasso, p is the dictionary size, and ω is the

number of independent repetitions of ManifoldLasso. More details are in Section 3.6.1

consists of points sampled from a two dimensional rectangle and rolled up along one of the

two axes, then randomly rotated in D = 49 dimensions. We learn the manifold using three

techniques: Local Tangent Space Alignment, Diffusion Maps, and Isomap, shown in Figures

3.2c, 3.2e and 3.2g. For comparison, we also analyze the “trivial embedding” consisting

of coordinates given by projection onto the rectangle edges (Figure 3.2a). These intrinsic

rectilinear coordinates are colored in red and blue, and show clear associations with individual

embedding coordinates.

The dictionary G consists of g1,2, the two intrinsic coordinates, as well as gj+2 = ξj,

for j = 1, . . . 49, the coordinates of the feature space. Applying ManifoldLasso to the

embeddings identifies the set S = {g1, g2} as the manifold explanation, and identifies the
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association of the recovered support with individual embedding coordinates φ1,2. By visual

inspection of Figures 3.2a, 3.2c, 3.2e, and 3.2g, we see that all embedding algorithms recover

the original manifold, although the embeddings φIso, φDM , . . . are not isometric (this is more

noticeable with Diffusion Maps), and sign changes are possible. However, Figures 3.2b,

3.2d, 3.2f and 3.2h demonstrate that ManifoldLasso recovers the two manifold-specific

coordinate functions in each case, while the coefficients β.,3:51,. decay rapidly to 0 with λ.

Furthermore, each of g1,2 is always mapped to the correct embedding coordinate. The

regularization paths are virtually identical for all embeddings, even though the embeddings

are not isometric.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Results for SwissRoll embedded using several ML algorithms. 3.2a: the data

mapped w.r.t. the edges of the rectangle. 3.2c, 3.2e, and 3.2g: embeddings colored by

intrinsic coordinates in red and blue. 3.2b, 3.2d, 3.2f, 3.2h: regularization paths of Mani-

foldLasso for these embeddings. Combined norms ‖β.j.‖F used in ManifoldLasso are

given on the left. Norms for individual embedding coordinates ‖β.jk‖2 are on the right.
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3.7 Molecular dynamics

From the machine learning point of view, MD data from well-studied molecules are an

excellent testbed for ManifoldLasso. Not only are MD data challenging problems for

manifold learning, interpretations of learned manifolds in terms of physical features are critical

for downstream tasks. High quality MD data are highly expensive to generate, taking weeks

or months of supercomputer time (31; 69). Every new simulation represents a new manifold,

and a new manifold explanation problem, and so fast automated analysis of these data by

identification of so called collective variables serves both in the scientific understanding of

the data and in acceleration sampling methods (160).

Our application of ManifoldLasso to MDS data entails several preliminary steps.

These include the choice of a featurization in which to learn the manifold, the design of the

dictionary, and the expression of the gradients of the dictionary functions in the translation

and rotation-invariant molecular shape space. This section explains our approaches to these

steps.

3.7.1 Representing molecular configurations

Our MD data are quantum-simulations from (47). The raw data consists of X, Y, Z coordinates

for each of the Na atoms of the chosen molecule. For a single observation, we denote these

by ri ∈ R3Na . The first step in our data analysis pipeline is to featurize the configuration in

a way that is invariant to rotation and translation. In the present experiments, we follow

(44) and represent a molecular configuration as a vector ai ∈ R3(Na3 ) of the planar angles

formed by triplets of atoms. We then perform an SVD on this featurization, and project the

data onto the top D = 50 singular vectors to remove linear redundancies; we denote the new

data points by ξ1:n. The EmbeddingAlg and wlpca algorithms work directly with ξ in

dimension D. Other possible representations such as applying a Procrustes transform to each

configuration to align it with the first one give similar results, and empirically no matter

which low level representation we choose, large-scale conformational changes are described by
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the relative rotations of groups of atoms - the bond torsions illustrated in Figure 3.1 (44).

We display scatterplots of pairs of the top features in feature space RD containing data

points ξ in Figures Recall that PCA is applied as a preprocessing step prior to Manifold-

Lasso, and so the PCA coordinates therefore form our feature space. PCA coordinates

have a natural ordering given by their corresponding eigenvalues, and so we are able to plot

the ’top’ coordinates. Multiscale non-i.i.d. noise and non-trivial topology and geometry of

data are present the PCA feature space. Note also that the manifolds are relatively thin in

comparison to some noise dimensions; in other words the manifold reach is of the same scale

as the noise. This ”noise” is non-uniformly distributed and highly correlated with position

on the manifold, varying, for example, with position along the circle embedded in the first

and second coordinates.

(a) (b)

Figure 3.3: Bond diagram and first 6 coordinates of PCA feature space of malonaldehyde.
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(a) (b)

Figure 3.4: Bond diagram and first 6 coordinates of PCA feature space of ethanol.
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(a) (b)

Figure 3.5: Bond diagram and first 6 coordinates of PCA feature space of toluene.
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3.7.2 Dictionaries for MD data

For molecular dynamics data analyses, our dictionary G consists of bond torsions g (see Figure

3.1). The bonds represented in the diagrams shown in Figures 3.3, 3.4, 3.5 are stable covalent

attractions between two atoms or molecules caused by the sharing of electrons. That is, two

atoms that are adjacent in the diagram share electrons, and therefore are stably attracted to

each other in the sense that they tend to remain adjacent.

We can associate features of the atomic geometry to bonds. For example, three contiguous

bonds in 3.4 - 3.5 define a bond torsion around the central bond. In particular, to each

ordered atom 4-tuple (d1, c1, c2, d2) consisting of two distal and two central points (atoms) in

R3, we associate a torsion τ(d1, c1, c2, d2) (where c1 and c2 are central, and d1 and d2 distal)

This torsion is not unique. There is an equivalence

τ(d1, c1, c2, d2) = τ(d1, c2, c1, d2) = τ(d2, c2, c1, d1) = τ(d2, c1, c2, d1).

For example, if [9, 3, 1, 5] is explicitly included in our dictionary, then [5, 1, 3, 9] should not be,
since these are in fact the same function. Thus, each set of 4 atoms defines 6 torsions upon
ordering, since we have 4! = 24 ordered 4-tuples, and equivalences of groups of 4. This is
understandable geometrically by the fact that a tetrahedron (the shape defined by 4 points)
has 6 edges, and therefore 6 torsions. In particular, a torsion τd1c1c2d2 is a function of the
angles of the triangles d1c1c2, c1c2d2, d1c1d2, and d1c2d2. Given four atoms d1, c1, c2, d2, the
torsion - the angle of the planes containing d1, c1, c2 and c1, c2, d2, is

τ(d1, c1, c2, d2) = cos
−1

(3.36)

(

‖((d2 −
〈d2−c2,c1−c2〉
‖c1−c2‖22

� (c1 − c2)− c2‖22 − ‖(d2 − d1 + (
〈d2−c2,c1−c2〉
‖c1−c2‖22

+
〈d1−c1,c2−c1〉
‖c2−c1‖22

− 1)� (c2 − c1))‖22 + ‖(d1 −
〈d1−c1,c2−c1〉
‖c2−c1‖22

� (c2 − c1))− c1‖22

2‖((d2 −
〈d2−c2,c1−c2〉
‖c1−c2‖22

� (c1 − c2)− c2‖2‖(d1 −
〈d1−c1,c2−c1〉
‖c2−c1‖22

� (c2 − c1))− c1‖2
).

(3.37)

We apply ManifoldLasso to two types of dictionaries. First, we apply it to dictionaries

implicitly defined by the bond diagram. That is, we include all torsions where there is a

bond (d1, c1), (c1, c2), and (c2, d2). However, since the distribution of electrons is in reality

governed by probabilistic quantum mechanics, we also replicate the analysis on a dictionary

consisting of all
(

6(Na
4)

)
torsions in the molecule.

We compute the gradients of the torsions by automatic differentiation (149). Recall that our

original featurization of the molecular geometry prior to application of EmbeddingAlg make
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use of planar angles. Given three atoms d1, c1, d2, the planar angle

α(d1, c1, d2) = cos−1(
‖d1 − c1‖2

2 + ‖d2 − c1‖2
2 − ‖d2 − d1‖2

2‖d1 − c1‖2‖d2 − d1‖
). (3.38)

We are interested in obtaining the gradient of a torsion as a function of the angles. We

can in principal write out the torsion as a function of the angles, but one cannot use the

obtained gradients directly in ManifoldLasso, since the angular features overparameterize

the molecular shape space ΣNa
3 (8; 101) of dimension D′ = 3Na−7, and off-manifold gradients

are therefore not well-defined. For example, whether one chooses to use angles from triangles

defined by (in torsion notation) {d1, c1, c2}, {d1, c1, d2}, and {d1, c2, d2}, or {c1, c1, d2} to

compute τ(d1, c1, c2, d2) has no effect on the value of τ(d1, c1, c2, d2), but changes the value

of the gradient in the planar angular space. We therefore project the gradients prior to

normalization on the tangent bundle of the shape space as it is embedded in RD.

3.7.3 The shape space

Appropriate treatment of the shape space is essential for running ManifoldLasso. This

space is defined in Section 2.5. Here, we show how to obtain the gradient of a torsion τ of a

molecular configuration in the tangent bundle of this space at a non-singular point. This

material is taken from Addicoat and Collins (8).

We are given a planar angle α ∈ R3(Na3 ), and we are interested in obtaining gradΣNa3
τα(αi),

the gradient of the torsion τ w.r.t. the submanifold ΣNa
3 ⊂ R3(Na3 ). Here, we have written

τα to emphasize that τ is a function of the planar angle feature set. We can compute the

differential Dα
x ∈ R3Na×R

3(Na3 )
consisting of gradients of each planar angle w.r.t. the Euclidean

coordinates of the atoms. This map is rank 3Na − 7 since codomain of this map is an

embedding of the shape space in R3(Na3 ). A deductive explanation for the rank of Wi is that

translation, rotation, and dilation correspond to a total of 7 degrees of freedom. We can

also compute the differential ∇xτ ∈ R3Na consisting of gradients of τ w.r.t. the Euclidean

coordinates of the atoms. Then

gradΣNa3
τα(αi) = (Dα

x (αi))
†∇xτ(αi). (3.39)
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As an additional but somewhat unrelated preprocessing step, we also apply Principal

Component Analysis (PCA) to the angular features matrix α1:n ∈ Rn×D prior to running

Diffusion Maps. To perform PCA, we use Singular Value Decomposition:

α1:n = MΠNT .

Denote by P the matrix formed with the first D columns of N ; P projects the angular features

into a lower dimension space that reduces redundancy while capturing the vast majority of

the variability. That is,

ξi = αiP, for i = 1, . . . n.

The gradient of τ with respect to coordinates ξ is thus given by

gradξ τα(ξi) = P T gradΣNa3
τα(αi).

We use gradξ τα(ξi) as ∇ξτα(ξi) in ManifoldLasso.
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3.8 Experiments: MDS data

In this section, we first demonstrate the workings of ManifoldLasso in a controlled setting

by applying it to a simple non-dynamical simulation of a rigidly-rotating ethanol molecule.

We then use ManifoldLasso to identify torsions that govern the dynamics of the molecules

in Figure 3.1.

3.8.1 ManifoldLasso on a Rigid Ethanol skeleton

We construct an ethanol skeleton composed of the atoms shown in Figure 3.6a. We then

sample configurations as we rotate the atoms around the C-C and C-O bonds. In contrast

with the MD trajectories, which are simulated according to quantum dynamics, these two

angles are distributed uniformly over a grid, and Gaussian noise is added to the position

of each atom. We call the resultant dataset RigidEthanol. As expected given our two a

priori known degrees of freedom, Figures 3.6b and 3.6c show that the estimated manifold

is a two-dimensional surface with a torus topology similar to that observed for the MD

Ethanol in Figure 3.1. In particular, it is parameterized by bond torsions g1 and g2

The dictionary consists of the twelve torsions implicitly defined by the bond diagram 2

in Figure 3.6a. All of these torsions circumscribe one of the central C-C and C-O bonds.

Counting permutations of peripheral hydrogens, we can see that there are 9 of the former,

and 3 of the latter, which we denote by g0:8 and g9:11 in Figure 3.6d. Hence, any pair {gj, gj′}

with j ∈ {0 : 8}, j′ ∈ {9 : 11} is an equally correct coordinate system for this manifold.

This is shown in Figure 3.6d by the incoherences µjj′ , i.e. mean pairwise cosines of the

dictionary functions. Comparing the row and column labels of Figure 3.6d with Figure 3.6a

shows that the collinearities of gradients clearly cluster by central bond. Thus, we expect

ManifoldLasso to recover one torsion from each group. Indeed, in the regularization path

of an individual replicate of ManifoldLasso shown in Figure 3.6e, collinear torsions are

2These are all 4-tuples of atoms connected by a path in the figure, modulo the natural equivalence relation
on torsions previously described.
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killed off, and a representative torsion is selected from each group. Finally, Figure 3.6f shows

that ManifoldLasso selects such orthogonal pairs in 18 out of 25 random replicates of the

n′ points.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Results of ManifoldLasso for RigidEthanol. Figure 3.6a shows the simplified

dynamics of our rigid molecular simulation. Atoms in the rigid ethanol skeleton are articulated

around the C-O and C-C bonds by a torus of rotations. Figure 3.6b shows the learned torus,

colored by C-C torsion g1 from Figure 3.1. Figure 3.6c shows the same torus, colored by

the C-O torsion g2 from Figure 3.1. Figure 3.6d displays the incoherences, i.e. pairwise

collinearities of dictionary gradients; C-C torsions are in orange, C-O torsions in blue. Figure

3.6e shows regularization paths ‖β.j.‖F vs. λ for a single replicate. The chord diagram in

Figure 3.6f represents the frequency of selecting each pair of torsions in replicate experiments.

The listed frequencies with which individual torsions are selected are given by the sizes of the

perimeter dots corresponding to each dictionary element, while the frequencies with which

pairs of torsions are selected are given by the line widths connecting the dots. Frequencies

are also given by the numbers next to the respective graphical indicators.
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3.8.2 Molecular Dynamics results

We first show that ManifoldLasso can distinguish groups that correspond to the chemical

bonds in Figure 3.1, as would typically be done by a scientist using prior domain knowledge.

Next, we repeat the analysis with no prior knowledge, including all distinct 4-tuples of atoms

in the dictionary. Note that as the data ξ does not lie exactly onM, the values of gradTMi gj

will necessarily be noisy as well.

3.8.3 Dictionaries based on bond diagrams

Bond diagrams such as the ones in Figure 3.1 are based on a priori information about molecular

structure garnered from historical work. Building a dictionary based on this structure is

akin to many other methods in the field (110; 194). As in the case of RigidEthanol, our

dictionaries consist of all equivalence classes of 4-tuples of atoms implicitly defined by bond

diagrams, and the incoherence plots for Ethanol and Malonaldehyde in Figures 3.7a and

3.7d show two groups of highly dependent torsions, corresponding to the two bonds between

heavy atoms in the molecules. Therefore, success means recovering a pair of incoherent

torsions out of these dictionaries. For Toluene, the manifold dimension is d = 1 and success

means recovering one of the 6 torsions associated with the peripheral methyl group bond.

For this molecule, there are also p− 6 = 24 torsions that do not explain the data manifold.

We apply ManifoldLasso with these dictionaries to the embeddings shown in Figure 3.1.

As Figure 3.7 shows, ManifoldLasso is always able to identify torsions corresponding

to the expected labelled bonds. Figures 3.7b, 3.7e, and 3.7g show regularization paths for

single replicates of ManifoldLasso, and Figures 3.7c, 3.7f and 3.7h show frequencies of

support recovery of sets of size d over w = 25 replicates. ManifoldLasso finds that the

toroidal Ethanol manifold is explained by pairs of torsions from the C-O and C-C bonds,

while Malonaldehyde is explained by one of each of the two central bonds. Toluene is

explained by the torsion of the peripheral methyl group. These agree with our domain-expert

validated parameterizations from Figure 3.1.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.7: Results for MD data with a priori dictionaries given by the bond diagrams

in Figure 3.1. The three rows correspond to Ethanol, Malonaldehyde, and Toluene,

respectively. Figures 3.7a and 3.7d display pairwise collinearities of dictionary gradients,

colored by bond as in Figure 3.1. Toluene, a 1− d manifold, has trivial cosines, and so these

are not shown. Figures 3.7b, 3.7e, and 3.7g show overall regularization paths of ‖β.j.‖F for

single replicates. Figures 3.7c, 3.7f, and 3.7h show chord diagrams displaying frequency of

support recovery of sets of size d for 25 replicates. As for RigidEthanol, two-dimensional

support recovery frequency is denoted by chord width, and one-dimensional support recovery

frequency is denoted by size of perimeter dot. Note that ’blue’ in toluene corresponds to

torsions in the benzene ring.
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Coordinate-association We show the association of individual embedding coordinates to

dictionary functions in Ethanol and Malonaldehyde. In general, manifold coordinates

may not have individual meaning, so it will not always be possible to find a good explanation

for a single φk. However, in contrast to Malonaldehyde, but similar to SwissRoll, Figure

3.8 shows that Ethanol has a distinct association of embedding coordinates with dictionary

functions. In particular, φ3 is associated with torsions from different groups as those associated

with φ1 and φ2. This is clearly evident in Figure 3.1. In Malonaldehyde, there is no clear

association with individual embedding coordinates. Note that this would also be true for

Toluene, as Figure 3.1 clearly shows a circular manifold symmetric in φ1 and φ2.
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Figure 3.8: Combined and coordinate-specific regularization paths in five replicates of

ManifoldLasso for Ethanol with dictionary given by the bond diagram. The blue torsion

associates with φ3, and the orange with φ1,2.
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Figure 3.9: Combined and coordinate-specific regularization paths in five replicates of

ManifoldLasso for Malonaldehyde with dictionary given by the bond diagram. There

is no clear association of embedding coordinates and covariates.
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3.8.4 Results from full dictionary

Actual interatomic interactions are often more complex than exhibited in a bond diagram;

thus, the analyzed molecules have more interactions than those represented in Figures and

3.1a-3.1c, and potentially more interesting bond torsions. Indeed, a motivating application of

quantum dynamics simulations is to uncover molecular behavior that is not encapsulated by

the simplified bond diagrams. This motivates us to test ManifoldLasso in the case when

the dictionary consists off all possible torsions, i.e. all
(
Na
4

)
4-tuples modulo equivalence.

For Ethanol and Malonaldehyde we obtain p = 756 torsions. 3 Such a large p is

challenging for l1 regularized estimation, due to the bias mentioned in Section 6.5.1 for large λ.

Moreover, examining Figures 3.10a and 3.10e, we see that, besides the two groups of collinear

torsions in the previous dictionary, there are other torsions, about a fourth of the 756, that

are coherent with both groups. While we do not necessarily expect ManifoldLasso to

succeed, or to be used in such a way in practice, this experiment will inform us on the

robustness of ManifoldLasso in a situation that is challenging for any type of sparsity

inducing regularization.

The results of ManifoldLasso with the full dictionary for Ethanol and Malonalde-

hyde are displayed in Figure 3.10. For consistency between replications, we choose a priori

the ground truth to be represented by torsions g74,176 and g0,8, which are representative

torsions for Ethanol, respectively for Malonaldehyde, depicted in Figure 3.1. We can

evaluate the selected d = 2 functions for coherence with this ground truth. In this most

challenging setting, ManifoldLasso identifies supports with mean incoherences with the

true support of .68 ± .32 and .95 ± .1 for Ethanol and for Malonaldehyde, respectively.

This is apparent from comparing selected torsions in Figures 3.10c and 3.10g with their

collinearities in Figures 3.10d and 3.10h. Thus, we can see that ManifoldLasso performs

very well on Malonaldehyde but more poorly on Ethanol.

In the latter figures, collinearities of the selected supports with example functions from the

3We do not analyze Toluene, because for d = 1 the solution is available analytically, making this example
somewhat trivial.
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representative true support are also plotted. We can see that the selected support functions

are often strongly coherent with the ground truth functions, both when the selected support

is almost orthogonal, and when the selected support functions are not. In the latter case,

both selected support functions are strongly coherent with only one of the ground truth

functions. Note that when both selected functions are more coherent with a single element of

the true support, we use the pairwise coherences with higher mean. The results are visualized

in Figure 3.10, which shows the embeddings colored by the selected torsions. The identities

of the selected torsions can be compared with the bond diagrams in Section 3.7.2. There

is a clear visual correspondence between coherences between torsions and their colorings of

the manifolds learned from Ethanol and Malonaldehyde; thus, when orthogonal pairs are

selected, we capture information that would otherwise necessarily be obtained visually from

the embeddings. However, the Malonaldehyde plots also demonstrate that even for this

simple manifold, associating manifold coordinates to dictionary functions by visual inspection

is delicate work. From a chemistry perspective, orthogonal recovered torsions generally flank

pairs of hydrogens of which each is attached to one of the central atoms in the putatively

true bonds. Thus, it makes sense that these peripheral torsions could geometrically describe

the same motion as the putative true support.

µ̄ σµ κ̄S σκS γmax σγmax
¯minni=1 minj∈S ||xij|| σminni=1 minj∈S ||xij ||

Ethanol (a priori) ∼1.0 8.348332e-08 10.029410 9.815921 44.110696 1.825407 0.970851 0.530601

Malonaldehyde (a priori) ∼1.0 9.752936e-08 2.220002 0.771986 26.189684 0.477759 2.709132 0.464913

Toluene (a priori) 15.576112 0.407799 1.449570 0.914012

Ethanol (agnostic) ∼1.0 4.801062e-11 4.138372 2.113210 57.300602 1.360244 1.932001 1.605302

Malonaldehyde (agnostic) ∼1.0 2.016285e-09 2.204895 0.589812 66.019168 1.044451 3.955157 0.853646

Table 3.2: Mean and standard deviation of theoretical quantities across replicates

For all quantum MD experiments, we examine the support recovery condition Theorem37.

In practice, we do not know theoretical quantities like µ, γmax, κS, and minni=1 minj′∈S ‖Xij.‖2

since we do not have access to S. However, we are able to calculate these quantities using
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the putative true support. The quantities in Table 3.2 indicate that the assumptions of our

support recovery guarantees are not satisfied. We first note that Figures 3.7a and 3.7d show

that even without foreknowledge of a unique true support, the incoherence parameter µ must

be quite close to 1, since it is a maximum over set of cosines whose mean is plotted. The high

values of the incoherence parameter µ and otherwise unfavorable empirical support recovery

parameters listed in the table indicate that we cannot expect a unique recovery. However,

ManifoldLasso is still successful in obtaining representative torsions from the desired bonds

in Figure 3.1. The similarity between the results on this real data, with more challenging noise

and variable sampling density, and the result on the synthetic RigidEthanol are witness

to the robustness of the ManifoldLasso method. When ManifoldLasso fails to select

orthogonal functions, for example due to the documented support recovery instability and

bias at high values of λ for Lasso methods in general (132; 88; 90), we consider a two-stage

variable selection procedure in which a secondary variable selection step is applied after initial

pruning, as in Hesterberg et al. (88). This approach is described in Chapter 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: Results for MD data with full dictionaries consisting of all possible torsions.

The top and bottom rows show results for Ethanol and Malonaldehyde, respectively.

Figures 3.10a and 3.10e show mean cosine collinearity of dictionary gradients ordered by

heirarchical clustering. Figures 3.10b and 3.10f show examples of regularization paths for

single replicates that select relatively orthogonal functions. The tuning parameter at which

|S| = d is indicated as λ0. Functions are colored if they are selected in any replicate. Figure

3.10c and 3.10g shows support recoveries given by ManifoldLasso over different replicates.

Figure 3.10d and 3.10h and shows mean cosine collinearity of selected supports. g74,176 and

g0,8 are representative torsions from the true support, while the others are selected in any

replicate. Pairs that are selected in any replicate are marked with a blue box.
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Figure 3.11: Ethanol support estimated using ManifoldLasso with full dictionary. Colors

should be compared with Figure 3.10.
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Figure 3.12: Malonaldehyde support using using ManifoldLasso with full dictionary.

Colors should be compared with Figure 3.10.
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3.9 Discussion

The ManifoldLasso algorithm presented here can be extended in several interesting ways,

and indeed, Chapters 4, 5, and 6 all extend the methods here in one way or another. In Chapter

4, we directly explain the tangent subspace ofM, independently of any embedding In Chapter

5, we consider a related problem that clarifies the heuristic tendency of ManifoldLasso to

select orthogonal coordinates, defines an empirical success criteria more specific than rank,

and helps resolve violated support recovery conditions. In Chapter 6, we jointly study gradient

and tangent space estimation. For these reasons, we defer most of our discussion of related

and future work to later in the thesis.

There are however several differentiating features of this chapter. Gradient estimation

on manifolds is typically derived from the perspective of local linear regression and tangent

space estimation (140; 17). However, as in Luo et al. (126), we make explicit the logarithmic

map by estimating and projecting upon the tangent space of φ(M), and our estimates of this

tangent space are made using the pushforward metric of Perraul-Joncas and Meila (152).

The symbolic regression methods of Brunton et al. (35), Rudy et al. (162), and Champion

et al. (39) for estimating governing laws of dynamical systems are especially similar to

ManifoldLasso. These methods use sparse regression with respect to a dictionary to learn

partial derivatives of the state of physical systems w.r.t. time. Their goal is to identify

the functional equations of non-linear dynamical systems by regressing the time derivatives

of the state variables on a subset of functions in the dictionary selected using a sparsity

inducing penalty. In contrast, the response variable in our regression are partial derivatives

of coordinate functions of the embedding space.

A similar group lasso approach to regressing vector fields was used in Haufe et al. (82).

Our method is differentiated from this approach by several features. First, our gradients are

w.r.t. a manifold. Second, we apply the vector field alignment to the problem of interpreting

coordinates output by an unsupervised learning algorithm. Finally, our vectors are gradients

of functions, and so our approach is actually solving the original functional support recovery
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problem.
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Chapter 4

TANGENT SPACE LASSO

This chapter introduces a simpler alternative to the Manifold Lasso for interpretable

manifold learning. This chapter shows how to adapt the Manifold Lasso approach for learning

non-zero partial derivatives of one set of response functions jointly with respect to another set

of covariate functions to the task of parameterizating a tangent space directly. This approach,

which we call Tangent Space Lasso, shares a similar algorithmic structure and motivating use

case in scientific data analysis, but rather than regressing individual embedding coordinates,

it applies a multidimensional variant to explain the tangent space itself. This new approach

does not make use of an embedding, and therefore should itself be thought of as an embedding

algorithm. We review the conditions for the existence of such parameterizations in function

space and for successful recovery from finite samples, and give results on small molecule MDS.

4.1 Introduction

The theoretical condition for successful support recovery of the Manifold Lasso algorithm

introduced in Chapter 3 that selected elements from a dictionary of functions have gradient

fields that are everywhere full rank does not refer to a learned embedding. This raises the

question of whether we can use a convex regularized method to recover manifold functional

support first embedding the data using a manifold learning algorithm. In this chapter, we

show that this is indeed the case. We introduce a simplified version of the Manifold Lasso

algorithm called Tangent Space Lasso that explains entire subspaces rather than individual

gradients, and can therefore identify manifold parameterizations without the use of embedding

coordinates.

This method shares many features with the Manifold Lasso algorithm. The gradients of a
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dictionary of domain related smooth functions are projected onto the estimated tangent spaces

of the data manifold before being used as covariates in a regression. As before, this regression is

highly overdetermined w.r.t. the manifold dimension, and so we apply a group lasso regularizer

to simultaneously zero-out entire gradient fields of individual dictionary functions. However,

the response variables in this regression are no longer the gradient field of an embedding

coordinate function, but rather the basis vectors of the tangent spaces themselves. As long as

the dictionary is constructed from functions that have meaning in the domain of the problem,

this learned embedding is still interpretable by definition. The learned parameterization

still has a functional form, and therefore can be used to compare embeddings from different

sources, derive out-of-sample extensions, and to interrogate mechanistic properties of the

analyzed system. This functional form constrasts with methods such as the Nystrom extension

for Diffusion Maps that enable out-of-sample embedding (23).

Finding parameterizations without use of an embedding has several advantages. It

streamlines the learning procedure and removes a mathematically unnecessary step. It may

not always be easy to find a good embedding (43), and gradients of embedding coordinates

output by algorithms like Diffusion Maps must be estimated, and so are a potential source of

noise. Fourth, as we have seen in Chapter 3, embedding coordinates may privilege certain

directions in the tangent space, and so by considering only tangent spaces, we remove some

amount of redundancy. Despite this, the special relevance of non-parametric embedding

algorithms will be further examined in Chapter 6.

Section 4.2 gives formuates the support recovery problem, and Section 4.3 presents

the TSLasso algorithm. Section 4.4 reviews conditions for unique recovery and selection

consistency. Section 4.5 shows experimental results on toy data and molecular dynamics

datasets. Section 4.6 examines related work and Section 4.7 discusses interesting features

and ideas for the future.



76

4.2 Problem and motivation

The Tangent Space Lasso directly learns a sparse parameterization of a d dimensional smooth

manifold M from a dictionary of smooth analytically computable functions G = {gj, j ∈ [p]}

of an open set U containing M to R. The mathematical context is mostly shared with

Chapter 3.

Problem Statement Suppose data D are sampled from a d-dimensional smooth subman-

ifold M embedded in the Euclidean space RD, where typically D � d. Assume that the

intrinsic dimension d is known. In contrast to Chapter 3, in this Chapter by smooth we mean

at least C1.

Our goal is to identify a mapping gS : {gj}j∈S, S ⊆ [p], |S| = d such that at every point ξ,

gS is a diffeomorphism from an open neighborhood U ⊂M of ξ to gS(U) ⊂ R|S|.

Tangent space estimation At each data point ξi ∈M, TSLasso requires estimation of

a D × d tangent basis TMi of a tangent space TξiM. We use the Weighted Local Principal

Component Analysis wlpca algorithm given in Section 2.3.

4.3 TSLassoAlgorithm

The idea of the TSLasso algorithm is to express the bases TMi of the data manifold tangent

spaces TξiM as sparse combinations of dictionary function gradient vector fields. This

simplifies the non-linear problem of selecting a best functional approximation to M to the

linear problem of selecting best local linear approximations. As in Chapter 3, our goal is to

obtain S such that gS is a local diffeomorphism, that is, DgS(ξi) is rank d.

Let X ∈ Rn×d×p be the array formed by stacking of gradTMi gj(ξi) as in Chapter 3, and

let XiS. refer to the Rn×d×d array with j ∈ S ⊆ [p]. If DgS(ξi) is rank d, then there exists a

d× d matrix βiS. such that

βiS. = X−1
iS. , ∀ i ∈ [n]. (4.1)
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However, in the general case, p > d, and so given an array β ∈ Rn×p×d, the decomposition

Id = Xi..βi.., ∀ ξi. (4.2)

holds for many different βi... By adding a joint sparsity constraint, we are able to identify a

minimal subset of interest S with rank d.

4.3.1 Loss Function

We adapt the ManifoldLasso method to induce joint sparsity within matrices β.j.. The

objective function we propose is

JTS,λ(X, β) :=
1

2

n∑
i=1

‖Id −Xi..βi..‖2
2 +

λ√
dn

p∑
j=1

‖β.j.‖F . (4.3)

Compared with Objective 3.19 in the previous chapter, we have replaced gradients of

embedding coordinates with orthonormal basis vectors of the tangent spaces. This captures

many of the important properties of the Manifold Lasso objective, but in a simplified form.

The group lasso penalty induces sparsity between dictionary functions and jointly across data

points.

The main difference between Objectives 4.3 and 3.19 is that the former replaces the

gradients of the embedding functions with the bases Id of the tangent spaces TξiM. In

Chapter 3 we showed that, given a point ξ ∈M, the choice of TMξ that rotates gradients of

both dictionary functions and embedding coordinates equivalently does not change the loss.

Now, we show that the JTS,λ is invariant to the choice of basis of gradTMi gj(ξ) only.

Lemma 39. Given arrays X ∈ Rn×d×p, β ∈ Rn×p×d and X i ∈ Rn×d×p where X i
i′ = Xi′ if i′ 6=

i,X i
i′ = UXi′ if i′ = i and U is a d× d unitary matrix, then

Jts,λ(X, β) = Jts,λ(X
i, βi) (4.4)

where βii′ = βi′ if i′ 6= i, βi = βi′U
T if i′ = i.
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Proof. Without loss of generality, let i = 1. Then, dropping constants,

JTS,λ(X
1, β1) =

n∑
i=1

‖Id −Xiβ
1
i..‖2 + λ

p∑
j=1

‖β1
.j.‖F (4.5)

= ‖Id −X1
1..β

1
1..‖2

F +
n∑
i=2

‖Id −Xi..β
1
i..‖2

F + λ

p∑
j=1

‖β1
.j.‖F (4.6)

= ‖Id − UX1..β1..U
T‖2

F +
n∑
i=2

‖Id −Xi..β
i
i‖2
F + λ

p∑
j=1

‖β1
.j.‖F (4.7)

= ‖U(Id −X1..β1..)U
T‖2

F +
n∑
i=2

‖Id −Xi..β
i
i‖2
F + λ

p∑
j=1

‖β1
.j.‖F (4.8)

= ‖Id −X1..β1..‖2
F +

n∑
i=2

‖Id −Xi..β
i
i‖2
F + λ

p∑
j=1

‖β1
.j.‖F (4.9)

=
n∑
i=1

‖Id −Xi..β
i
i..‖2

F + λ

p∑
j=1

(
n∑
i=1

‖β1
ij.‖2

2) (4.10)

=
n∑
i=1

‖Id −Xi..β
i
i..‖2

F + λ

p∑
j=1

(
n∑
i=2

‖βij.‖2
2 + ‖β1j.U

T‖2
2)1/2 (4.11)

=
n∑
i=1

‖Id −Xi..β
i
i..‖2

F + λ

p∑
j=1

(
n∑
i=2

‖βij.‖2
2 + ‖β1j.‖2

2)1/2 (4.12)

=
n∑
i=1

‖Id −Xi..β
i
i..‖2

F + λ

p∑
j=1

‖β.j.‖F (4.13)

= JTS,λ(X, β). (4.14)

In our context, this proposition applies to X = [gradTMi gj(ξi) s.t. i ∈ [n], j ∈ [p]] in

tangent bases TMi , and U represents an alternative choice of basis.

Proposition 40. Suppose we are given arrays X ∈ Rn×d×p and X i ∈ Rn×d×p where X i
i′.. =

Xi′.. if i′ 6= i,X i
i′ = UXi′.. if i′ = i. Let β̂ = arg minβ Jts,λ(X, β), β̂i = arg minβ Jts,λ(X

i, β),
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and suppose β̂i is unique. Then

β̂ii′.. = β̂i′.. if i′ 6= i (4.15)

β̂ii′.. = β̂i′..U
T if i′ = i. (4.16)

Proof. Suppose that there exists a β′ such that JTS,λ(X
i, β′) < Jts,λ(X

i, βi). Then, by

Lemma 39, there exists a β−i with β−ii = βiU
T such that Jts,λ(X, β

−i) < JTS,λ(X, β̂), which

contradicts our assumption that β̂ minimizes JTS,λ(X, β̂).

Finally, we examine the connection to the recovered support. Let S(β) = j ∈ [p] s.t.‖β.j.‖2 >

0.

Proposition 41. Suppose we are given X, X i and resulting β, βi as in Proposition 40. Then

S(β̂) = S(β̂i).

Proof. Recall that the only difference between β and βi is that β̂i.. = β̂ii..U
T . Thus, rows of

βi.. that are zero will remain so after rotation, and similarly for those that are non-zero.

Thus, the selected support S is independent of the basis chosen for each tangent space.

4.3.2 TSLasso Algorithm

These propositions show that JTS,λ is suitable for manifold support recovery in a similar

manner to the objective from Chapter 3. We can therefore transform the non-linear manifold

support recovery problem into a collection of sparse linear problems in which we express

coordinates of individual tangent spaces as linear combinations of gradients of functions

from our dictionary. Tangent spaces at each point are estimated in step 8, enabling utilizing

gradients of dictionary functions in TξiM by projecting the gradient ∇ξg
j(ξi) ∈ RD on to

estimated tangent spaces TMi as described in Chapter 3. We then input these gradients into

Objective 4.3 and minimize to solve for the support.
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Algorithm 5 TSLasso(Dataset D, dictionary G, intrinsic dimension d, kernel bandwidth ε,

neighborhood cutoff size r, regularization parameter λ)

1: Construct Ni for i = 1 : n; i′ ∈ Ni iff ‖ξi′ − ξi‖ ≤ r, and construct local data matrices

Ξ1:n

2: Construct kernel matrix K ← exp(
‖Ξi−1kiξi‖2

ε

2
) for ε = r

3

3: for j = 1, 2, . . . p do

4: Compute ∇ξg
j(ξi) for i = 1, . . . n

5: Compute ζ2
j by (3.21) and normalize ∇ξg

j(ξi)← (1/ζj)∇ξg
j(ξi) for i = 1, . . . n

6: end for

7: for i = 1, 2, . . . n do

8: Compute basis TMi ←wlpca(Ξi, Ki,Ni , d)

9: Project Xi ← (TMi )T∇ξg
1:p ∈ Rd×p

10: end for

11: β ← GroupLasso(Id,1:n, X1:n, λ
√
dn)

12: Output S = supp β

Normalization Normalization details are shared with Chapter 3.

Computation The major difference from ManifoldLasso, computationally, is that we

no longer need to compute an embedding. Identifying local datasets Ξi is O(Dnn′), where

n′ = |I|, the number of assayed points. This is less expensive than the time need to construct

the full neighborhood graph for an embedding. For each Group Lasso iteration, the compute

time is O(n′2pd3).

Tuning For TSLasso, the theoretical maximum λ value, is

λmax = max
j

(
n∑
i=1

d∑
k=1

(gradTMi gj(ξi))
T ek)1/2. (4.17)

Other details are shared with Section 3.4.4.



81

Connection to isometry As mentioned in Definition 22, a map φ between two d dimesional

Riemannian manifolds (M,g) and (N,h) is an isometry if, for all points ξ ∈M

〈u, v〉g(ξ) = 〈Dφu,Dφv〉h(φ(ξ)).

When g = id and h = id are unitary, this is equivalent to Dφ being unitary. If φ is a mapping

into Rd, then this means that Dφ(ξ) consists of gradients gradTMi φk(ξ) that are orthogonal

and unit norm. Given such a φ, the Manifold Lasso objective 3.19 is the Tangent Space

Lasso objective 4.3. However, note that such as φ will not exist for manifolds of non-trivial

curvature (108).

4.4 Support Recovery Conditions

We give two types of support recovery coditions that mirror those in in Chapter 3. First, in

order to ensure that the support is unique, it must be the only functionally independent set

explaining the manifold. Second, the amount of colinearity present in the dictionary must be

low enough to meet certain conditions that we will state in this section.

4.4.1 Uniqueness Condition

The support recovery uniqueness condition on the rank of DgS is identical to Proposition

36 from Chapter 3. That is, if the support S found by TSLasso is the only functionally

independent subset with rank d, then it is the unique subset that parameterizes the manifold.

As before, the proof invoke the implicit function theorem locally and then extrapolates to the

manifold as a whole.

4.4.2 Support Recovery Consistency

Another challenge in identifying the true support stems from estimation of the tangent space.

W assume that data are sampled from M without noise, and so incorporate the convergence

rate result of (6). Our main result synthesizes this rate with the group lasso convergence rate
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given in Agarwal et al. (10). These results depend on the

S-incoherence µS = max
i=1:n,j∈S,j′ /∈S

|XT
i.jXi.j′ | (4.18a)

internal-colinearity νS = max
i=1:n,α∈Rd:||α||2=1

αT (XT
i.SXi.S)−1α. (4.18b)

(4.18c)

where Xi is the matrix constructed by stacking the gradient of dictionary functions. As in

Chapter 3, the incoherence measures the correlation between functions in the true support

and not in the true support, while the internal colinearity measures the amount of colinearity

within the true support. One can then give conditions for support recovery consistency that

depend on µS and νS.

Proposition 42. Assume that

1. M is d−dimensional Ck compact manifold with positive reach.

2. Data ξ are sampled from some density p on M with p > 0 all over M.

3. ξ ∈M◦ with probability 1 under p.

Let S be the ’true’ support, S(β) be the support selected by TSLasso, µS and νS be defined

by (4.18a) and (4.18c), and further assume

1. |S| = d.

2. DfS has rank d on M◦,

3. µSνSd < 1.

Then using the tangent space estimation algorithm in (6) with bandwidth choice ε = O(log n/(n−

1))d with n ≥ ((1− µSνSd)/2νSd)d/(k−1)

Pr(S(β̂) ⊂ S) ≥ 1−O
(

(
1

n
)
k
d

)
.
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Several features differentiate this result from that in Chapter 3. First, since there is no

embedding, noise stems only from tangent space estimation. Second, the convergence rate

is related with the smoothness of the manifold k; a smoother manifold will have a faster

converge rate. However, several features are shared. Functions with large collinearity need to

be avoided in the dictionary.

4.5 Experiments

We illustrate the behavior of TSLasso on toy and real data examples. First, we establish

that the algorithm is successful in simple toy examples, up to a noise threshold for tangent

space estimation. Then, we apply it to small dictionaries from MDS data and show that we

recover chemically meaningful results about the simulated system. Finally, we apply it to the

dictionaries from Chapter 3 and show that the results are similar to those achieved using

ManifoldLasso.
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Dataset n Na D d εN n′ p ω

SwissRoll 100000 NA 49 2 .5 25 51 5

RigidEthanol 50000 9 50 2 .89 100 4 5

Toluene 50000 15 50 1 2.8 50 16 5

eMDA-H-H-Me 50000 12 50 1 2.3 50 8 5

Ethanol 50000 9 50 2 1.8 100 4 5

Malonaldehyde 50000 9 50 2 1.7 50 4 5

M-Xylene 50000 18 50 2 4.3 50 4 5

Dimethylfuran 50000 15 50 2 3.6 50 7 5

Ethanol 50000 9 50 2 3.5 100 12 25

Malonaldehyde 50000 9 50 2 1. 100 12 25

Toluene 50000 15 50 1 1.9 100 30 25

Ethanol 50000 9 50 2 3.5 100 756 25

Malonaldehyde 50000 9 50 2 1. 100 756 25

Ethanol 50000 9 50 2 3.5 500 756 25

Malonaldehyde 50000 9 50 2 1. 500 756 25

Table 4.1: Experimental parameters. SwissRoll and RigidEthanol are toy data, while

the others are from MDS. n is the overall number of data points, Na is the number of atoms

in the molecular dynamics simulations, D is the dimension of the data set, d is the manifold

dimension (assumed known), ε is the tangent space estimation kernel bandwidth, n′ is the

number of data points on which TSLasso was run, p is the size of the dictionary, and ω is

the number of replicates.
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Experimental setup For all of the experiments, the data consist of n data points in D

dimensions. TSLasso is applied to a uniformly random subset of size n′ = |I| using p

dictionary functions, and this process is repeated ω number of times. Due to the small

replicate size, we report via error bars. Note that the entire data set is used for tangent space

estimation. In our experiments, the intrinsic dimension d is assumed known, but could be

estimated by a method such as in Levina and Bickel (121). The local tangent space kernel

bandwidth εN is estimated using the algorithm of Joncas et al. (98) for molecular dynamics

data. The regularization parameter λ ranges from 0 to λmax. The last d surviving dictionary

functions are chosen as the parameterization for the manifold. Parameters are summarized in

Table 3.1.

Toy data We show that TSLasso recovers the correct parameterization in two noisy

simulations. As in Chapter 3, we construct a Swiss Roll manifold randomly rotated into 49

dimensions, and a non-physical simulation of the ethanol molecule with only two rotational

degrees of freedom, corresponding to bond torsions g1 and g2 (Figure 4.1). Preprocessing

details are shared with Chapter 3. However, we now add Gaussian noise to the original

atomic positions. Figure 4.1 demonstrates that TSLasso correctly recovers {g1, g2} as the

manifold parameterization, but that as high-dimensional noise is added, support recovery is

impaired.
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Figure 4.1: Top Left: The Swiss Roll. R refers to the reach of the manifold; σ refers to the

noise level. Gradients of intrinsic coordinates are shown in red. Top Right: The ethanol

molecule; the two circles correspond to the simulated degrees of freedom. These correspond to

bond torsions, which are depicted by 3 contiguous same-color line segments linking 4 atoms.

The torsion is the angle formed by the planes inscribing the first and last three atoms of the

four. σ is the noise level, and R is the distance between the central and peripheral atoms of

rotation. Bottom: Regularization paths for TSLasso for the Swiss Roll (left) and Rigid

Ethanol (right) examples at different noise levels. Color of the true support matches labels in

the top figures (Swiss Roll - red, Rigid Ethanol - purple and blue).
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Functionally independent MDS dictionaries We apply TSLasso to small dictionaries

hand chosen to contain a subset of functions satisfying our functional independence criteria

Proposition 36. That is, there is a known ”true” support within the dictionary. Figure 4.2

shows that TSLasso recovers the same parameterization over all replicates in a variety

of MD simulations; that is, as λ is increased, the same d functions persist longest in the

regularization diagram. These selected functions correspond to those torsions labelled in

4.2, and are of clear chemical significance. For comparison, we also include visual results

confirming that these bond torsions are a parameterization of the data manifold. Figure 4.3

shows embeddings of the six assayed molecule datasets generated using the Diffusion Maps

algorithm. The results obtained by TSLasso do not make use of these embeddings, but

these verify that these bond torsions do in fact parameterize the data manifold. These results

suggest that the local denoising property of the tangent space estimation, coupled with the

global regularity imposed by the assumption that the manifold is parameterized by the same

functions throughout, is sufficient to identify the slow modes of molecular motion. For these

embeddings, hyperparameters ε are set as in Table 4.1. These embeddings are colored by the

bond torsions selected by TSLasso.
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(a)

Figure 4.2: The top figures show standard molecular bond models of the molecules generating

our analyzed MDS data. The bottom figures show regularization paths over replications from

TSLasso. The variable selection procedure is to increase λ until only d torsions from the

original molecule are retained. The d selected torsions are plotted in the left figure with

colors corresponding to the regularization paths on the right. For the sake of visualization,

we have purposely reordered the dictionary so that the selected torsions always correspond to

g1 or g2. g1 is shown in purple, and g2 in blue.
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Figure 4.3: Diffusion maps embeddings of our datasets, colored by selected bond torsions

from small hand-selected dictionaries.
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Diagram and full dictionaries We also replicate the results from Chapter 3 using the

simplified TSLasso algorithm. These show similar results to ManifoldLasso, and thereby

show that the incorporation of the embedding coordinate gradients was unnecessary. For

dictionaries consisting of torsions implicitly defined by bond diagrams, TSLasso recovers a

”correct” support consisting of opposing bond torsion almost all of the time in both ethanol

and malonaldehyde. On full dictionaries consisting off all possible torsions, TSLasso also

behaves similarly to ManifoldLasso in that is generally successful, while sometimes

selecting collinear supports. Increasing the number of assayed point to n′ = 500 does not

have an appreciable effect on stability. Note that the change in collinearities for Mal-

onaldehyde compared with Chapter 3 are due to the different bandwidth parameter ε.

Similarly, g21, g35 and g75, g351 and are now ground truth for Ethanol and Malonaldehyde ,

respectively.
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(a)

Figure 4.4: Left: Malonaldehyde support estimated using TSLasso with diagram dictio-

nary and n′ = 100. Right: Malonaldehyde support estimated using TSLasso with full

dictionary and n′ = 100. Bottom: Malonaldehyde support estimated using TSLasso with

full dictionary and n′ = 500.
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(a)

Figure 4.5: Left: Ethanol support estimated using TSLasso with diagram dictionary

and n′ = 100. Right: Ethanol support estimated using TSLasso with full dictionary and

n′ = 100. Bottom: Ethanol support estimated using TSLasso with full dictionary and

n′ = 500.

4.6 Related work

We distinguish between our approaches and purely non-parametric methods that attempt

to learn a parameterization of M. For example, Saul and Roweis (163) and Teh and

Roweis (178) and references therein propose parametrizing M by finite mixtures of local

linear models, aligned so as to provides global coordinates, in a way reminiscent of Local

Tangent Space Alignment (203). Another idea is to use d eigenfunctions of the Laplace-

Beltrami operator ∆M as a parametrization of M. The Diffusion Maps coordinates could be
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considered such a parameterization (49; 50; 74). However, these are not in and of themselves

interpretable, and it is not clear how many such coordinates are needed (43). Mohammed

and Narayanan (138) showed that principal curves and surfaces can provide an approximate

manifold parametrization. These methods can often be used as embedding algorithms in

our approach, but make no attempts at synergizing with an interpretable dictionary. Roweis

and Saul (161); Dsilva et al. (59); Kohli et al. (109); Chen and Meilă (43) tackle the related

problem of choosing among the infinitely many Laplacian eigenfunctions a set which provide

a d-dimensional parameterization of the manifold. However, these methods fail to provide

physical meaning for the selected functions.

We note several distinctions between the TSLasso method and the ManifoldLasso method

in Chapter 3. In view of recovering a support that satisfies Proposition 36 TSLasso is

conceptually simpler, by directly providing a parametrization ofM, as well as computationally

more efficient, since it doesn’t require computation of an embedding. On the other hand,

ManifoldLasso uses is able to explain individual embedding coordinate functions. In

contrast, we have no consistent matching between dictionary functions and unit vectors in

Id, and so can only provide an overall regularization path, rather than one corresponding to

individual tangent basis vectors. Although TSLasso is inspired by ManifoldLasso , the

tangent bases are not themselves gradients of a known function, and, indeed it may not be

the case that such a function even exists.

With respect to sparse regression, the seminal group lasso paper of Yuan and Lin (197)

and support recovery analyses of Elyaderani et al. (62); Wainwright (187) are central to

our approach. However, our use of replicates in experiments is reminiscent of the Stability

Selection method of Meinshausen and Bühlmann (133). Such methods address instabilities

of the variable selection, in particular, when restrictive theoretical conditions are violated

(204; 90). The empirically-based two-stage OLS-hybrid approach we elucidate in Chapter 5

for resolving this issue is based on ideas in Efron et al. (61); Meinshausen (132); Hesterberg

et al. (88). Some attractive alternate approaches to this problem that we do not pursue

are the use of non-convex penalties such as SCAD (65; 33), weighted data points in the
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Adaptive Lasso (206), and the elastic net, which induces correlated functions to reach zero

simultaneously on the regularization path (207) We additionally note the method of Haufe

et al. (82), which applies group lasso to analyze sparse decomposition of vectors fields, albeit

in a different setting.

Our approach is related to methods like autoencoders (77) and factor models (195) that

give functional forms for learned low-dimensional representations. However, the explanations

we obtain are endowed with the meaning of the domain specific dictionaries. Less obviously,

descriptors like principal curves or Laplacian eigenfunctions are generally still non-parametric

(i.e exist in infinite dimensional function spaces), while the parameterizations by dictionaries

we obtain (e.g. the torsions) are in finite dimensional spaces. This distinction is mirrored in

comparison with the many so-called dictionary learning methods in which a low-dimensional

transformation is learned simultaneously with its inverse. We note that our method is not

dictionary learning per se, but rather sparse coding, in which the dictionary is given (177).

Our approach is particularly relevant to enhanced sampling methods in molecular dynamics

(159; 160; 69; 70). In these methods, exploration of the molecular state space is accelerated

through biasing of simulation towards directions of large scale variation identified through

visual inspection of denoised embedding coordinates. More recently, reinforcement-learning

type syntheses of these ideas have been applied (188; 148; 173). The eigenfunctions of the

Laplacian have special relevance to quantum systems, for which the quantum correspondence

principle states that classical dynamics should be observable in so-called stable eigenstates

(86; 198; 113; 176).

Although in our application our dictionary consists of functions with physical meaning,

our general principal of finding parametric geometrically-motivated approximations of learned

representations is relevant to a range of machine learning contexts. Examining functions

in embedding coordinates is quite typical in genomics (11), and much deep learning work

also makes use of explicit traversal of a latent space (124; 172). Learned gradients provide

interpretable (9) or otherwise statistically-useful information (192; 52; 196). However, our

approach relies on wlpca for tangent space estimation (98; 6). Improvement of this estimator
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in the presence of noise is an active area of research (155).

4.7 Discussion

The Tangent Space and Manifold Lasso methods introduced in this and the previous chapter

apply a new tool - group lasso - to the problem of interpretable manifold parameterization.

These methods are robust to non-linearity in both the algorithm and the covariates. They

require functions that are smooth, as well as the assumption that the data lie on a smooth

manifold. Both methods use differentials of functional covariates that are available analytically,

and the ManifoldLasso method also uses differentials of the representation learned by a

manifold embedding algorithm.

One possible modification to these methods is to analyze gradients in the coordinates of

the ambient space RD rather than in the manifold tangent space. That is, the regression

problems would be solved using the same group lasso machinery in T RD rather than TM

In this variant, the greater penalty accrued by off-manifold gradients in TSLasso and

ManifoldLasso due to their being normalized prior to projection is substituted by the

greater penalty necessary to reconstruct the identity using a set of off-manifold gradients. As

a related alternative, we could estimate gradients of interpretable dictionary functions in the

embedding space, and use the pushforward Riemmanian metric as the response variable in a

tangent space lasso or basis pursuit.

A question raised by this approach is the extent to which the mappings learned using

Tangent Space Lasso are statistically preferable to a fully non-parametric approaches. The

parametric form of gS provides a more straightforward way to conduct out-of-sample extension

of the learned embedding than classical methods such as Nystrom extension (111) or Nadaraya-

Watson type estimators (189). Since the functions gj defined in an neighborhood of M in

RD, gS can be extended to the ambient space around M, and we can project points points ξ

lying near M to gS(M). Although our method makes uses of a parameterized dictionary, we

cannot currently prove that S may be estimated at parametric rates, even with a fixed p and

the assumption of noiseless data. This is because tangent space estimation requires a number
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of samples exponential in d (6). Speculatively, an assumption on global regularity and a

weak learnability-type argument based on the ability of disjoint neighborhoods to generate

better-than-random guesses might justify a faster convergence rate.

A deficiency of these methods is that the support recovery conditions are restrictive. For

example, any pair of feature coordinates would be a valid parameterization for the Swiss Roll.

Any diffeomorphic transformation of gS is also a parametrizing chart ofM, and therefore the

dictionary G can contain any diffeomorphic transformation of the true support and still satisfy

the rank condition Proposition 36. However, in our molecular dynamics examples, it is almost

unavoidable to construct an overcomplete dictionary containing multiple possible solutions.

A second challenge is collinearity. Similar to κS and γmax in Chapter 3, µS is a maximum

over all data points, and so a single outlying data point can violate our recovery conditions.

Indeed, the failure of sparsity-inducing algorithms to achieve stability and consistency in a

board variety of settings is well-known (91).
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Chapter 5

MANIFOLD AND TANGENT SPACE BASIS PURSUIT

The regularized regression methods from Chapters 3 and 4 are challenged by our application

to molecular dynamics data. Overcomplete dictionaries - dictionaries for which there are

multiple functionally independent full rank solutions - are both unavoidable and problematic

for our estimators. As a response to this challenge, this chapter introduces Manifold and

Tangent Space Basis Pursuit, related algorithms that give a more specific characterization

of support recovery. These algorithms use more robust optimization at the expense of

computational tractability. We therefore also introduce a hybrid of these approaches with

the Manifold and Tangent Space Lassos. Results are given on the overcomplete dictionaries

from the previous chapters.

5.1 Introduction

Our theoretical conditions for successful support recovery using the methodology of the

previous chapters are challenged by large dictionaries in several ways. First, the functional

independence condition that the gradients span the tangent space can often be satisfied by

”uninformative” functions like the coordinate functions of the ambient space in the Swiss

Roll example. In this case, there is no longer a well-defined notion of what it means to

successfully recover the true functional support. Second, large dictionaries cause collinearity

that violates our support recovery conditions. These problems are hard to avoid. For example,

the 9 atom molecule ethanol has 756 potential bond torsions, but its slow mode is only a 2

dimensional manifold within a 20 dimensional shape space. Unless there is a disproportionate

concentration off torsions in the directions normal to this manifold, there will be multiple

possible parameterizations. A finer notion of support recovery and an algorithm for recovering
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this support are therefore desireable.

Overcompleteness describes the presence of multiple possible solutions within a dictionary.

Methods for selecting between basis in overcomplete dictionaries are typically required in

domains such as wavelet decomposition for which a dictionary may be constructed pro-

grammatically Molecular dynamics is such an area, since we can construct new dictionary

elements at minimal computational cost, and there is no a priori differentiating feature of an

particular function such as there would be for a system with measured observables. Inspired

by techniques for selecting from overcomplete dictionaries in sparse coding, we introduce an

alteration of the Manifold and Tangent Space Lassos that directly optimizes the penalty term.

We call these methods Manifold and Tangent Space Basis Pursuit because of their explicit

solving of basis pursuit versions of Manifold and Tangent Space Lasso. These algorithms

are subtly different from the combinatorial duals of the Manifold and Tangent Space Lasso

objective functions, and are sometimes better-suited for selecting parameterizing support

functions from within elements of overcomplete dictionaries.

Section 5.2 gives background on sparse regression, the Manifold and Tangent Space Lassos,

and manifold learning. Section 5.3 introduces the Tangent Space and Manifold Basis Pursuit

objective functions and algorithms. Section 5.4 shows that the Tangent Space Basis Pursuit

objective is related to the mathematical notion of isometry. Since these adaptations also

make our algorithm less tractable, Section 5.5 introduces a two-stage method that combines

our the Manifold and Tangent Space Lassos with their basis pursuit counterparts. Results on

molecular experiments are given in Section 5.6.

5.2 Background

Our motivating challenge is the definition and selection of a ”best” parameterizing subset

of functions elements from within an dictionary consisting of multiple d sets of functionally

independent functions, also known as an overcomplete dictionary. The Manifold and Tangent

Space Basis Pursuit methods are variants of the Manifold and Tangent Space Lassos that

are well-suited for this challenge. Although they are inspired by convex duals, they are
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subtly different due to the cardinality-constraint justified by our manifold support estimation

task. In this section, we review relevant background in sparse regression, convex duality, and

manifold learning.

5.2.1 Manifold learning

Manifold learning components such as embedding and tangent space estimation algorithm

are shared with previous chapters previous chapters. As we focus on discriminating between

parametrizations by their metric properties, we recall Proposition 23 which states that, in

ambient metric, Dφ(ξ) is unitary at all ξ ∈M if and only if φ is an isometry. This is strictly

stronger and more specific characterization of Dφ than the full-rank condition required for

functional independence. In Section 5.4, we explain a connection between isometry and basis

pursuit in our manifold estimation setting.

5.2.2 Basis pursuit

The equivalent combinatorial optimization problem for Group Lasso is known as Group

Sparse Basis Pursuit (GSBP) (157). The Manifold and Tangent Space Lasso objectives from

Chapters 3 and 4 therefore find minimizers of their combinatorial GSBP equivalents. As in

the previous chapters, we assume that we are given a dataset D ∈ Rn×D sampled from a d

dimensional smooth manifold M, a smooth embedding φ from RD to Rm, and a dictionary

of smooth functions G : U → Rp defined on an open set U containing M. Let

X = [gradTMi gj(ξi) i ∈ [n], j ∈ [p]] ∈ Rn×d×p (5.1)

Y = [gradTMi φk(ξi) i ∈ [n], k ∈ [m]] ∈ Rn×d×m, (5.2)
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where these gradients have been normalized in the manner of Chapters 3 and 4. Also, given

a array β ∈ Rn×p×d, define the penalties

‖β‖2,0,2 :=

p∑
j=1

1‖β.j.‖F 6=0, (5.3)

‖β‖2,1,2 :=

p∑
j=1

‖β.j.‖F . (5.4)

The GSBP equivalents of the Manifold and Tangent Space Lasso objective functions are then

JM,C=C( X, Y, β) := ‖β‖2,1,2 s.t. (
n∑
i=1

‖Yi.. − Xi..βi..‖2
F )1/2 ≤ C (5.5)

JTS,C=C( X, β) := ‖β‖2,1,2 s.t. (
n∑
i=1

‖Id − Xi..βi..‖2
F )1/2 ≤ C (5.6)

These are the objectives which are minimized by values of λ approaching zero in the Manifold

and Tangent Space Lasso objectives JM,λ and JTS,λ In particular, C and λ are in a monotonic

relationship. A larger value of λ increases the weight on the penalty term, and corresponds

to a larger constraint size C.

In Chapters 3 and 4, the theoretical goals of these algorithms were to select from G any d

smooth functions whose gradients are everywhere full rank. Such a set is a minimizer of `0

objectives

JM,`0( X, Y, β) = ‖β‖2,0,2 s.t. Yi.. = Xi..βi.. for all i = 1 : n, and k = 1 : m, (5.7)

JTS,`0( X, β) = ‖β‖2,0,2 s.t. Id = Xi..βi.. for all i = 1 : n, and k = 1 : d. (5.8)

Therefore, the sufficient support recovery conditions in Chapter 4 for minimizers of objectives

5.5 and 5.6 to select minimizers of objectives 5.7 and 5.8 are related to those required for

Program 2.15 to select a solution of program 2.14. When these conditions are violated, the

solution path of the lasso regularized problem may not contain maximally sparse solution

(179). On the other hand, while the maximally sparse solution is not unique for overcomplete

dictionaries, objectives 5.5 and 5.6 can often differentiate between multiple sets of functions

S, S ′ that are `0-optimum in the sense that |S| = |S ′| = d. Thus, we can see that the `0 and
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group lasso programs are both in-and-of-themselves problematic - the former because it does

not lead to a unique solution, and the latter because it may not find a parameterization that

is maximally sparse.

Problem Statement We pose problems similarly to Sections 3.2 and 4.2, with an important

distinction. We are given data D = {ξi ∈ RD : i ∈ 1 . . . n} sampled i.i.d. from a smooth

manifold M of intrinsic dimension d embedded in a feature space RD by the inclusion map,

and a dictionary of smooth functions G = {g1, . . . gp, s.t. gj : U ⊆ RD → R}, where U

is an open set containing M. In the previous Chapters, we sought to identify a set of

d distinct functions gS : {gj}j∈S, S ∈ [p]d, the set of d element samples from [p] without

replacement, such that at every point ξ, gS is a diffeomorphism on an open neighborhood

U ⊂ M containing ξ to gS(U) ⊂ R|S|. Here, we not only identify a suitable sparse local d

function diffeomorphism, but also explicitly aim to minimize JM,C=0 and JTS,C=0.

5.3 Manifold and Tangent Group Sparse Basis Pursuit

We therefore introduce a cardinality-constrained version of the group sparse basis pursuit

objectives 5.5 and 5.6 for manifold support recovery. Our Manifold and Tangent Basis Pursuit

programs are, respectively,

arg min
β∈Rn×p×m:|S(β)|=d

JM,C=0(X, Y, β) (5.9)

arg min
β∈Rn×p×d:|S(β)|=d

JTS,C=0(X, β). (5.10)

The constraint |S(β)| = d is equivalent to saying that the solution is a minimizer of Objectives

5.7 or 5.8, respectively. Despite their familiar form, these objectives are not equivalent to

the Manifold and Tangent Space Lassos. The solution to a `1 regularized problems may not

always solve the `0 equivalent, and so constraining the solution to satisfy both optima gives

a different objective. To see this another way, note that many functions are non-zero early in

the regularization paths in Chapters 3 and 4, and to select only d functions, λ must be quite

close to its maximum.
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We could naively optimize MBasisPursuit and TSBasisPursuit by exhaustive

search. In practice, this means enumerating subsets S of [p] of size d and independently fitting

least squares ols(Xi.S, Yi) or ols(Xi.S, Id) before summing up the squared losses across i to

get a loss associated with each subset S. To accelerate this process, we take an alternative

approach in Section 5.5. Other algorithmic steps such as normalization of gradient fields,

tangent space estimation, and using a subset I ⊂ [n] such that |I| = n′ for computational

improvement are performed as in Chapters 3 and 5.

Computation The principal drawback of this approach is computational. The algorithmic

runtime to explore the set of possible supports is O( p!
d!(p−d)!

(n′(d2p+ p3)). The factor p!
d!(p−d)!

necessary to perform exhaustive search over d element subsets of a p element dictionary is

avoided by the convex methods of the previous chapters. Other computational details are

shared.
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Algorithm 6 MBasisPursuit(Dataset D, dictionary G, embedding coordinates φ(D),

intrinsic dimension d, kernel bandwidth ε, neighborhood cutoff size r)

1: Construct Ni for i = 1 : n; i′ ∈ Ni iff ‖ξi′ − ξi‖2 ≤ rN , and local data matrices Ξ1:n

2: Construct kernel matrix K ←Laplacian(N1:n,Ξ1:n, εN )

3: for j = 1, 2, . . . p do

4: Compute ∇ξgj(ξi) for i = 1, . . . n

5: Compute ζ2
j by (3.21) and normalize ∇ξgj(ξi)← (1/ζj)∇ξgj(ξi) for i = 1, . . . n

6: end for

7: for i = 1, 2, . . . n do

8: Compute basis TMi ←wlpca(Ξi,Ki,Ni , d)

9: Project Xi.. ← (TMi )T∇ξg1:p

10: Compute Yi.. ←PullBackDPhi(Ξi,Φi, T
M
i , Li,Ni , d)

11: end for

12: Compute ζ2
k ←

1
n

∑n
i=1 ‖Yi.k‖2 (i.e. (3.20)), for k = 1, . . .m and

normalize Yi.. ← Yi.. diag{1/ζ1:m}, for i = 1, . . . n.

13: β ← arg minβ∈Rn×p×m:|S(β)|=d JM,C=0(X,Y, β)

14: Output S = suppβ
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Algorithm 7 TSBasisPursuit(Dataset D, dictionary G, intrinsic dimension d, kernel

bandwidth ε, neighborhood cutoff size r)

1: Construct Ni for i = 1 : n; i′ ∈ Ni iff ‖ξi′ − ξi‖2 ≤ rN , and local data matrices Ξ1:n

2: Construct kernel matrix K ← exp(
‖Ξi−1kiξi‖2

ε

2
) for ε = r

3

3: for j = 1, 2, . . . p do

4: Compute ∇ξgj(ξi) for i = 1, . . . n

5: Compute ζ2
j by (3.21) and normalize ∇ξgj(ξi)← (1/ζj)∇ξgj(ξi) for i = 1, . . . n

6: end for

7: for i = 1, 2, . . . n do

8: Compute basis TMi ←wlpca(Ξi,Ki,Ni , d)

9: Project Xi.. ← (TMi )T∇ξg1:p

10: end for

11: β ← arg minβ∈Rn×p×m:|S(β)|=d JTS,C=0(X,β)

12: Output S = suppβ
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5.4 Theory

Empirically, both the Manifold and Tangent Space Basis Pursuit tend to select gradient

bundles that are orthogonal and slowly varying. In this section, we examine how the Tangent

Space Basis Pursuit minimizer in particular can satisfy an interesting mathematical property.

We show that, given perfect tangent space estimation, if there exists a mapping gS that is an

isometry, then it will be selected by TSBasisPursuit.

5.4.1 Preliminaries

We introduce some streamlined notation. Given a multiway array β ∈ Rn×p×d with p > d,

define the TSBasisPursuit loss function

l(β) = ‖β‖2,1,2 (5.11)

Using this loss, assuming p = d and βi is full rank, define a dual loss l∗ w.r.t. an array

X ∈ Rn×d×d

l∗(X) = l(β) : Id = Xi..βi...

That is, βi.. is the right inverse of Xi... Note that here we have constrained p = d since we

seek a d function support.

Define the n2,2 : Rn×d → Rn×d normalization maps

Ṽ := n2,2(V ) =

√
nV

‖V ‖F
(5.12)

and n2,.,2 : Rn×p×d → Rn×p×d

X̃ := n2,2,.(X) = [n2,2(X..j) j ∈ 1 . . . p] (5.13)

Normalization by (5.12) creates an equivalence between vector fields that differ by a constant

factor. This then allows us to define the invariant loss

l̃∗(X) := l∗(X̃). (5.14)
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We will show that l̃∗(X) is lower for sets of vectors Xi.S which are orthogonal, of constant

length, and tangent to the manifold. That is, X̃i.S is unitary.

Before proceeding, we require the following piece of Lemma 39.

Lemma 43. Consider two sets of vector fields X and X i where X i
i.. = UXi.., where U is

unitary and Xi′.. = X i
i′.. for other values i′ 6= i. Then l∗(X) = l∗(X i)

Proof. Without loss of generality, let i = 1. We can write

l∗(X i) = l(βi) =

p∑
j=1

(
n∑

i′=2

‖βi′j.‖2
2 + ‖βi1j.‖2

2)1/2 =

p∑
j=1

(
n∑

i′=1

‖βi′j.U‖2
2)1/2 = l∗(X) (5.15)

where the second to last equality is because the norm ‖v‖2
2 is unitary invariant.

5.4.2 Selection of orthonormal sets of vectors

We next show that l̃∗(X..S) is minimized by orthonormal sets of vectors. That is, l̃∗(X..S) is

lower for X..S such that X̃i.S is unitary. This is summarized by the following proposition.

Proposition 44. Suppose we have a set of vector fields X ∈ Rn×d×p that includes a subset

X..S+ ∈ Rn×d×d indexed by a d-subset S+ ∈ [p]d such that, for all i ∈ [n], Xi.Sj
+ are mutually

orthogonal over j and constant length over i. That is, for all i, we have XT
i.S+

j

Xi.S+
j′

= 0 for

all j 6= j′ ∈ [d], and ‖Xi.S+
j
‖ = cj. Then

S+ = arg min
S∈[p]d

l̃∗(X..S)

Proof. Our proof strategy is to first show that l̃∗(X..S+) = d
√
n. Then, we will show that this

gives a lower bound on l̃∗(X..S) for all d element partitions of [p].

Lemma 45. l̃∗(X..S+) = d
√
n.

Proof. l̃∗(X..S+) = l∗(X̃..S+). The matrices X̃..j are normalized to have norm
√
n for each j.

Since the lengths of vectors X̃i.j are equal across i by construction, this mean that ‖X̃i.j‖ = 1
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for each i. By Proposition 43, without loss of generality, we can thus consider

βijk =

1 j = k ∈ {1 . . . d}

0 otherwise

. (5.16)

Then ‖β.j.‖2 =
√∑n

i=1 1 =
√
n, and so l̃∗(X..S+) = d

√
n.

Now we show that, if some other d− subset S does not have orthonormal X̃i.S, then

l̃∗(X) > d
√
n. A full rank X̃i.S can fail to be orthonormal in two ways. Either at least two

gradients are not orthogonal, or at least one vector has norm 6= 1. Thus, we show that

orthogonality lowers l∗ over non-orthogonality, and constant length lowers l∗ over non-constant

length. We first consider the former case.

Lemma 46. Let X..S ∈ Rn×d×d be defined as above and let X ′..S be an array such that

‖X ′i.Sj‖2 = ‖Xi.Sj‖2 for all i ∈ [n], j ∈ [d] and X ′i.S is column-orthogonal ∀i ∈ [n]. Then

l̃∗(X..S) > l̃∗(X ′..S).

Proof. For every data point i, by Lemma 43, without loss of generality

βiijk =

‖X̃
′
i.Sj
‖−1

2 j = k ∈ {1 . . . d}

0 otherwise

. (5.17)

Therefore,

l̃∗(X ′) =
d∑
j=1

√√√√ n∑
i=1

‖X̃ ′i.Sj‖
−2
2 . (5.18)

On the other hand, the invertible matrices X̃i.S admit QR decompositions X̃i.S = QR

where Q and R are square unitary and upper-triangular matrices, respectively (13). Since l∗

is invariant to unitary transformations, we can without loss of generality, consider Q = Id.
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Denoting Id to be composed of basis vectors [e1 . . . ed], the matrix R has form

R =


〈e1, X̃i.S1〉 〈e1, X̃i.S2〉 . . . 〈e1, X̃i.Sd〉

0 〈e2, X̃i.S2〉 . . . 〈e2, X̃i.Sd〉

0 0 . . . . . .

0 0 0 〈ed, X̃i.Sd〉

 . (5.19)

The diagonal entriesRjj = 〈qj, X̃i.Sj〉 of this matrix have form ‖X̃i.Sj−
∑

j′∈{1...j−1}〈X̃i.Sj , e
j′〉ej′‖.

Thus, Rjj ∈ (0, ‖X̃i.Sj‖]. On the other hand βiS. = R−1, which has diagonal elements

βjj = R−1
jj , since R is upper triangular. Thus, βijj ≥ ‖X̃i.Sj‖−1, and therefore ‖βiSj .‖ ≥ ‖β′iSj .‖.

Since ‖βiSj .‖ ≥ ‖β′iSj .‖ for all i, then ‖β.Sj .‖ ≥ ‖β′.Sj .‖.

The above proposition formalizes our intuition that orthogonality of X lowers l∗(X) over

non-orthogonality. We now show a similar result for the somewhat less intuitive heuristic

that dictionary functions whose gradient fields are constant length will be favored over those

which are non-constant. Since the result on orthogonality holds regardless of length, we

need only consider the case where the component vectors in our sets of vector fields are

mutually orthogonal at each data point, but not necessarily of norm 1. Note that were they

not orthogonal, making them so would also reduce l∗.

Lemma 47. Let X ′..S be a set of vector fields X ′..Sj mutually orthogonal at every data point

i. Let X
′′
..S be a set of vector fields X

′′
..Sj

mutually orthogonal at every data point i, and

‖X ′′i.Sj‖ = cj for all i ∈ [n]. Then l̃∗(X ′..S) ≥ l̃∗(X
′′
..S).

Proof. Given indices i and j, let cij = ‖X̃iSj .‖. Then, by Proposition 43, we can rotate X̃i.Sj

so that

β′iSjk =

c
−1
ij if j = k

0 otherwise.

(5.20)

Thus,

‖β′.Sj .‖2 = ‖[c−1
1j . . . c

−1
nj ]T‖2. (5.21)
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On the other had, for X
′′
..S, the normalization guarantees that ‖X ′′i.Sj‖ = 1, so

‖β ′′.Sj .‖2 = ‖[1 . . . 1]T‖ =
√
n. (5.22)

We therefore want to show that ‖β′j‖2 ≥
√
n.

Let cij = ‖X ′i.j‖2. To do this, we apply an iterative procedure, whereby pairs of vectors

X̃ ′i.Sj and X̃ ′i′.Sj are perturbed to become more constant in length. We proceed in a pairwise

manner, taking pairs of vector, one of which has norm greater than 1 and one which has

norm less than 1, and transferring length from the longer to the shorter. As we have assumed

orthogonality of the vectors in X ′i.S for each i, we can perform these perturbations solely

w.r.t. the scalars cij.

Dropping the index j for convenience, without loss of generality, let c1 < 1 and c2 > 1. Let

X∗..Sj ,β
∗
.Sj .

, c∗1 and c∗2 generically refer to X..Sj ,β.Sj ., c1 and c2, respectively, after a single step

of this algorithm. Note that ‖β∗.Sj .‖2 ≤ ‖β′.Sj‖2 implies Lemma 47, since we can iteratively

make vector more constant in length until they are all unit length. There are two cases of

interest that lead to the same analysis.

• Case 1: |1 − c1| < |1 − c2|. In this case, let c∗1 = 1 and c∗2 = c2
1 + c2

2 − 1. Thus,

‖[c∗1, . . . c∗n]T‖ =
√
n, while ‖β∗.Sj .‖ =

√
1 + 1

c21−c22−1
+
∑n

i=3 c
−2
i .

• Case 2: |1 − c1| ≥ |1 − c2|. In this case, let c∗2 = 1 and c∗1 = c2
1 + c2

2 − 1. Thus,

‖[c∗1, . . . c∗n]T‖ =
√
n, while ‖β∗.Sj .‖ =

√
1

c21−c22−1
+ 1 +

∑n
i=3 c

−2
i .

Since ‖β′.Sj‖2 =
√

1
c21

+ 1
c22

+
∑n

i=3 c
−2
i , this amounts to the claims

1

c2
1 + c2

2 − 1
≤ 1

c2
1

+
1

c2
2

− 1 (5.23)

1

c2
1 + c2

2 − 1
≤ −c

2
1c

2
2 − c2

1 − c2
2

c2
1c

2
2

(5.24)

c2
1c

2
2

c2
1c

2
2(c2

1 + c2
2 − 1)

≤ −(c2
1 + c2

2 − 1)(c2
1c

2
2 − c2

1 − c2
2)

c2
1c

2
2(c2

1 + c2
2 − 1)

(5.25)

c2
1c

2
2 + (c2

1 + c2
2 − 1)(c2

1c
2
2 − c2

1 − c2
2)

c2
1c

2
2(c2

1 + c2
2 − 1)

≤ 0. (5.26)
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At this point we can remove the denominator, which will always be positive by the assumptions

that c1 > 0, c2 > 1. Thus we continue

c2
1c

2
2 + (c2

1 + c2
2 − 1)(c2

1c
2
2 − c2

1 − c2
2) ≤ 0 (5.27)

c2
1c

2
2 + c4

1c
2
2 − c4

1 − c1
1c

2
2 + c1

1c
4
2 − c2

1c
2
2 − c4

2 − c2
1c

2
2 + c2

1 + c2
2 ≤ 0 (5.28)
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2 − 1)(c2
1 + c2

2) ≤ 0 (5.32)

(c1 − 1)(c1 + 1)(c2 − 1)(c2 + 1)(c2
1 + c2

2) ≤ 0. (5.33)

This condition is satisfied by the assumption that c1 > 0, c2 > 1.

Together, Lemmas 46 and 47 show Proposition 44. This is because we can take any X.S.

and orthogonalize the vectors Xi.S at each data point i to get X ′..S such that l̃∗(X..S) ≥ l̃∗(X ′..S).

Then, for each j, we can make the vectors ‖X ′i.Sj‖ more constant in length w.r.t i to get

X ′′..S such that l̃∗(X..S) ≥ l̃∗(X ′..S). We now attend to the relation of this proposition to the

tangent spaces of a manifold.

5.4.3 The preference for tangency

We introduce a variant of l̃∗(X) that is with respect to the tangent space of a d dimensional

manifold M, and show that it is minimized by X that are not only orthogonal and evenly

varying, but tangent toM. Suppose we are given vector fields X ∈ Rn×D×p as well as tangent

bases TM1:n ∈ Rn×D×d. Denote XM := [TMi
T
XT
ij. j ∈ 1 . . . p, i ∈ 1 . . . n] ∈ Rn×p×d. Then define

a manifold specific loss

l(TM1:n, X) := l∗(X̃M),

where normalization is applied prior to projection. The next proposition formalizes the

intuitive statement that vectors which are more tangent to M will be have longer length

after projection, and therefore smaller loss.
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Lemma 48. Suppose we are given data ξi sampled from a d dimensional smooth manifoldM,

tangent spaces TM1:n, and vector fields X ∈ Rn×D×p that includes a subset X..S+ indexed by a

d-subset S+ ⊂ [p] such that, given a i ∈ [n], for each j in Sj, Xi.Sj
+ are mutually orthogonal,

constant length, and tangent to M at each point ξi. That is, for all i, we have XT
i.S+

j

Xi.S+
j′

= 0

for all j 6= j′ ∈ [d], ‖Xi.S+
j
‖ = cj, and ‖TMi

T
Xi.j‖ = ‖Xi.j‖. Then

S+ = arg min
S∈[p]d

l(TM1:n, X..S) (5.34)

Proof. ‖TMi
T
X̃i.j‖ ≤ ‖X̃i..‖ for all j, while ‖TMi

T
X̃T
i.j‖ = ‖X̃T

i.j‖ for all j ∈ S+. Thus,

l(TM1:n, X..S+) = l̃∗(X..S+), while l(TM1:n, X..S) ≥ l̃∗(X..S) for all other d-subsets S. Therefore,

Proposition 44 implies the lemma.

This proposition extends Proposition 44 and claims that projection after normalization

favors vectors which are tangent to a manifold M. This proposition characterizes the

preprocessing and variable selection steps of TSBasisPursuit , albeit considering the input

to TSBasisPursuit to be arbitrary vectors rather than gradients.

5.4.4 Selection of isometries

Lemma 48 has special relevance when these vector fields are gradient fields. This is because a

d-coordinate isometric coordinate chart [g1 . . . gd] of M if and only if the gradient vectors

of these coordinate functions form unitary matrices upon projection on TξM. That is, as

shown in Proposition 23, Dg̃S
+

(ξ) unitary implies that gS
+

is at least locally an isometry.

To extend Lemma 48 to this functional setting, we recall the finite-sample functional

analogue of our vector-field normalization

f̃ :=
f√

1
n

∑n
i=1 ‖∇f(ξi)‖2

2

(5.35)

i.e. Equation 3.20. Given a d-subset S, denote JgS(ξ1:n) ∈ Rn×D×d to be the tensor of

gradients ∇gj(ξi) and DgS(ξ1:n) ∈ Rn×d×d to be the tensor of gradients gradM gj(ξi).
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Proposition 49. Suppose we are given a d dimensional smooth manifoldM and a p function

dictionary G : U → Rp containing d functions indexed by S+ ⊂ [p] for which g̃S
+

=

[g̃S
+
1 , . . . g̃S

+
d ] is an isometry of M. Then

S+ = arg min
S∈[p]d

l(TM1:n, Jg
S). (5.36)

Proof. We show that JgS(ξ1:n) satisfies the conditions of Lemma 48. By assumption, g̃S
+

is an isometry of M. Note that Jg̃S(ξ1:n) = J̃gS(ξ1:n), where the latter is given by the

vector field normalization Equation 5.12. We show that JgS
+
j (ξi) = ∇ξg

S+
j (ξi) are mutually

orthogonal across j, constant length across i, and always tangent to M .

We begin by showing that ∇gS
+
j (ξi) are tangent to M. The assumption that g̃S

+
is an

isometry of M implies that Dg̃S
+

(ξi) is unitary. Therefore, ‖ gradTMi g̃S
+
j (ξi)‖ = 1, so, since

n2,2(Jgj(ξ1:n)) =
√
n and and ‖ gradTMi gj(ξi)‖ ≤ ‖∇g̃j(ξi)‖ for all j , ‖∇g̃S

+
j (ξi)‖ = 1 as well,

and so ∇gS
+
j (ξi) are necessarily tangent to M.

Since∇gS
+
j (ξi) are tangent toM, and∇g̃S

+
j (ξi) are constant length, ∇gS

+
j (ξi) are constant

length as well. This is because the normalization ∇g̃S
+
j (ξi) = ∇gS

+
j (ξi)√

1
n

∑n
i=1 ‖∇g

S+
j (ξi)‖22

rescales all

∇gS
+
j at each data point ξi by the same constant.

Finally, we show mutual orthogonality across j at each i. The assumption that g̃S
+
j is an

isometry ofM implies thatDg̃S
+
j (ξi) is unitary. Therefore, (gradTMi gS

+
j (ξi))

T gradTMi g̃
S+
j′ (ξi) =

0 for all j 6= j′. Since gradTMi gS
+
j = TMi

T∇gS
+
j (ξi), this implies that (∇gS

+
j (ξi))

T∇gS
+
j′ (ξi) =

0.

Proposition 49 says that, if a dictionary contains functions which are component functions

of an isometric coordinate chart modulo rescaling, then they will be selected by TSBasis-

Pursuit when the tangent spaces TMi are estimated without noise. Note that this also

assumes that data ξi are sampled from M without noise. Beyond this potentially unrealistic

statistical assumption, we also note two other oversights. First, isometric coordinate charts

are not necessarily global isometries. As mentioned in Chapter 3, we cannot find embeddings

of topologically non-trivial d dimensional manifolds in Rd, and so we can only hope to find
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isometries away from sets of measure 0. Second, only regions of manifolds witjh zero Gaussian

curvature will admit a local isometry into d dimensions Kohli et al. (109). For example, we

can find an almost everywhere isometric coordinate chart for the flat torus in R4, but cannot

for the torus of revolution in R3. In cases like the latter, the loss l̃∗ may be compared with

the isometric optimimum of d
√
n to measure the degree of non-isometry.

5.5 Two-stage basis pursuit

As discussed in Chapters 3 and 4, problems with shrinkage including variable selection

inconsistency at large λ, as well as the desirable properties of an intermediate value, are

well-established in the support recovery and sparse coding literature (166; 132; 88; 33; 116;

81). On the other hand, the MBasisPursuit and TSBasisPursuit algorithms are

computationally intractable for large dictionaries and high dimensional manifolds. In this

Section, we heuristically adapt the convex method to respond to this problem.

This adaptation is motivated in particular by the ideas in Meinshausen (132); Meinshausen

and Yu (134). The approach of Meinshausen (132) is to first run a Lasso at an intermediate

tuning parameter value, and then run a second Lasso on the surviving coefficients. In our

approach, we first minimize JM,λ=λmax/2
(X, Y ) or JTS,λ=λmax/2

(X) to obtain a vastly reduced

dictionary size, and then minimize JM,C=0(X, Y ) or JTS,C=0(X) to select from supports

selected at the intermediate λ value. The λ at which these functions are obtained is somewhat

arbitrary, but theoretical arguments using random Gaussian noise provide arguments in favor of

λ > O(log p) (166). We experimentally find relatively wide regions of relatively low cardinality,

and substantial improvements in the combinatorial loss with minimal computational burden

at λ = λmax/2.
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Algorithm 8 TwoStageMBP(Dataset D, dictionary G, embedding coordinates φ(D),

intrinsic dimension d, kernel bandwidth ε, neighborhood cutoff size r)

1: Get λmax using Equation (3.22)

2: S’ = ManifoldLasso(D,G, φ(D), d, ε, r, λmax/2)

3: S = MBasisPursuit(D, gS′ , φ(D), d, ε, r)

4: Output S

Algorithm 9 TwoStageTSBP(Dataset D, dictionary G, intrinsic dimension d, kernel

bandwidth ε, neighborhood cutoff size r)

1: Get λmax using Equation (4.17)

2: S’ = TSLasso(D,G, d, ε, r, λmax/2)

3: S = TSBasisPursuit(D, gS′ , d, ε, r)

4: Output S

5.6 Two-stage Experiments

We provide experimental results that illustrate the performance of the two-stage methods

TwoStageMBP and TwoStageTSBP.

Two-stage Manifold Basis Pursuit We first apply the TwoStageMBP to obtain

highly orthogonal solutions at reduced computational cost in the experiments from Section

3.8. In the plotted replicate from Figure 3.10b, 10 out of 756 covariate functions are obtained,

and the second stage of the two-stage solution is able to run rapidly. Figure 5.1 gives

support recovery results for Ethanol and Malonaldehyde using the two-stage method for

ManifoldLasso. These solutions are colinear with true support - .97± .03 for Ethanol and

.96± .01 for Malonaldehyde.

Visual inspection of the colored embeddings for Ethanol in Figures 5.3 and 5.2 also

confirms that these match our visual intuition of orthogonally varying torsions. Selected
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pairs of functions are in general more visually orthogonal than found using ManifoldLasso,

particularly Ethanol . Examining the identities of these torsions with the molecules in

Figures 3.1b and 3.1c, these tend to be hydrogen-hydrogen torsions abutting the true central

bonds. Together, these experiments show that on noisy, large p problems, and with massive

violations of the incoherence conditions, ManifoldLasso, while sometimes not successful

on its own, can be made robust by off-the-shelf methods.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: TwoStageMBP results for Ethanol and Malonaldehyde, respectively, with

dictionaries given by all possible torsions. Figures 5.1a and 5.1d show individual replicates,

with intermediate tuning parameter value λmax/2. Colors are plotted for functions selected

by subsequent combinatorial analysis. Figure 5.1c and 3.10g shows support recoveries given

by subset selection using group lasso at λmax/2 followed by TwoStageMBP over ω = 25

different replications. Figure 3.10d and 3.10h and shows mean cosine collinearity of selected

supports. g74,176 and g0,8 are representative torsions from the true support, while the others

are selected in any replicate. Pairs that are selected in any replicate are marked with a blue

box. (n = 100, p = 756)
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Figure 5.2: Ethanol support using basis pursuit on superset obtained using ManifoldLasso.

Colors should be compared with Figure 5.1.
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Figure 5.3: Malonaldehyde support using basis pursuit on superset obtained using Mani-

foldLasso. Colors should be compared with Figure 5.1.
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Two-stage Tangent Space Basis Pursuit We repeat the same analyses using the two-

stage combination of Tangent Space Lasso and Basis Pursuit. These results also show that

the two-stage approach, is preferentially effective for identifying orthogonal supports. Note

that the change in collinearities for Malonaldehyde compared with Chapter 3 are due to

the different bandwidth parameter ε. Similarly, g21, g35 and g75, g351 and are now ground

truth for Ethanol and Malonaldehyde , respectively.



120

(a)

Figure 5.4: TwoStageTSBP results using full dictionaries (n = 100, p = 756).
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5.7 Discussion

The methods introduced in this chapter build on the ManifoldLasso and TSLasso algo-

rithms to deal with challenges posed by real data. In particular, we introduce a more specific

success criteria for support recovery, and combine it with the previous algorithms to create a

two-stage approach. Several areas for potential improvement exist. First, the speed of the

combinatorial problem could also be accelerated by computing matrix inverses in the d = 2

case. Second, as mentioned in Chapter 4, it seems plausible that our basis pursuit methods

could be shown to achieve a polynomial convergence rate. Since the loss of every set S is

an average of squares over data points, better-than-random estimates of the tangent space

made with polynomial samples and assumptions on global regularity would enable a weak

learnability argument based on the Hoeffding bound. Third, characterizing the reasons for

retention of functions as the tuning parameter approaches 0 is also of interest. The number

of retained functions in G, while greater than d, remains low. Due to our normalization, it is

possible that these functions simply large gradients at a single data point.

The Tangent Space Basis Pursuit problem is one of many methods for identifying isometries

(109; 129), but it has the advantage of being a convex program. One important question is

whether the global basis pursuit minimizer is retained within the pruned dictionary set. On

the other hand, our method finds the most isometric global parameterization, and so is not

suited for the local minimum-distortion parameterization problem (108), in which functions

from a dictionary are selected from in order to find the most isometric parameterization at

various points ξi. We suggest two novel alternate objectives for this problem. First,

arg min
S∈[p]d

‖ log specd(X̃i.S)‖2
2, (5.37)

where specd are the d eigenvalues of Xi.S. This loss will be minimized by an isometry, since

all singular values are 1. Another alternative replaces Xi.j with

exp(−(log ‖Xi.j‖2)2)
Xi.j

‖Xi.j‖
(5.38)
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before running a group lasso on each Xi.j independently. Without the need to induced group-

wise sparsity on a regularization path, a method-of-frames objective in the combinatorial

step may also be minimized by an isometry (166). Finding isometries from dictionaries with

s > d is another possible area for research, as are the situations such as fitting densities for

which a non-isometric embedding may be desired.
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Chapter 6

GRADIENT ESTIMATION USING LEARNED TANGENT
SPACES

The previous chapters have introduced a set of algorithms for interpretable unsupervised

learning based on the idea of differential composition for which estimates of the gradients

of functions w.r.t. the data manifold M play a central role. The quality of estimates

made through either local linear regression or projection of an analytic gradient onto the

manifold directly depends on the quality of the estimates of the associated tangent spaces.

Unfortunately, tangent space estimators are often challenged by even limited amounts of

noise. In this chapter, we examine the relationship between the tangent space, local linear

regression, and the learned embedding map in greater detail, and propose a new method for

tangent space estimation.

Our method is to estimate the these tangent spaces with respect to a latent space

determined by a manifold learning algorithm. In particular, we use the gradients of an

embedding map to define this reduced dimensional space, and give a sufficient condition

on the embedding map for this space to be the correct tangent space. This method can

be used in conjunction with many existing gradient estimators. We demonstrate that this

method improves accuracy of tangent space and gradient estimation in the presence of noise

in simulations, and apply it to data from the Sloan Digital Sky Survey (26).

6.1 Introduction

Estimates of the gradient of a function f defined on a manifold M⊂ RD are fundamental to

a variety of statistical tasks, but determining the correct estimator for a particular problem

remains a practical and theoretical challenge (139; 17; 45; 125). At a point ξ ∈ M, the
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gradient with respect to the manifold gradM f(ξ) lies in the tangent space TξM, and so

tangent space estimation is often performed as an intermediate step of gradient estimation.

Having a lower-dimensional projection enables performing local linear regression in rank-

deficient tangent spaces, and tangent-based regularization for gradient estimation using local

linear regression has been shown to have desirable statistical properties (17; 45). Even higher-

order gradient estimators such as those based on fitting smooth functions like splines suffer

when noise in observation of f is correlated with noise in observation of ξ (125). Therefore,

achieving better tangent space estimation in the presence of noise is an active area of research.

Existing approaches to tangent space estimation vary in their applicability to noisy

data. The manifold hypothesis describes data either distributed on (17; 45; 43; 122) or

near (75; 6; 155; 67) a low-dimensional surface. This difference has an effect on tangent

space estimation. The desirable finite sample and asymptotic properties of local PCA in the

former case are shown in Aamari and Levrard (6), but their analyses rely on shrinking the

localization window as sample size grows, and so depend asymptotically on the infinitesimal

nearby structure of the data manifold. Since this requires distinguishing between directions of

local and global variability, higher-dimensional noise can be especially problematic. Thus, the

theoretical justifications of a shrinking window size are often subordinated to the empirical

need for this window to be large enough to capture global structure rather than noise. This

has motivated alternatives like smoothing of locally estimated tangent spaces (155).

An alternative line of reasoning appears elsewhere in the machine learning literature.

In Chapter 3, we used manifold learning algorithms to identify slow modes of molecular

dynamics data. We showed that the representations learned by Diffusion Maps corresponded

to bond torsions with rotational degrees of freedom. However, these representations do not

represent the entirety of the molecular dynamics - Diffusion Maps filters them out from faster

modes of motion. This preservation of large-scale structure in the top eigenfunctions of the

Laplacian is evident in a variety of settings (93).

This chapter examines the effect of this noise-reducing property on tangent space estima-

tion. In our method, we use the an embedding algorithm to learn a denoised representation
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of our data, and use the estimated gradients of the learned coordinates to estimate the

tangent space TξM. We give background on our statistical set-up in Section 6.2. Section

6.3 then introduces our embedding-based tangent space estimator. A sufficient condition on

the embedding map φ for its use in this estimator is given in Section 6.4. In Section 6.5, we

estimate gradM f using these tangent spaces by local linear regression. Experimental results

are given in Section 6.6.

6.2 Background

The mathematical framework introduced in this chapter explicitly models noise. We assume

the existence of a smooth 1 compact dM dimensional manifold M with reach R that we

call the data manifold that is observed in the feature space RD. We also assume thatM is

a non-trivial submanifold of a dE dimensional noise manifold E , which is itself a compact

smooth submanifold of the feature space RD.

The data and noise manifolds have the following relation. For every ξ, we cannot directly

observe ξ, but rather observe a noisy realization ξε = ξ + εξ where εξ ∈ BM,E(ξ, R
′), a ball

of radius R′ < R and dimension dE − dM in Nξ(M, E) - the normal space of M in E at

ξ. Thus, E is contained within a tubular neighborhood of M, i.e. E ⊆ ∪ξ∈MBM,E(ξ, R
′).

Furthermore, M contains a dM ball of radius larger than 4R′; in other words, E is thinner in

the normal direction to M. More information on fibrations is given in Section 2.2.

Problem statement Assume that we have access to covariate and response observations

of n data points ξε,i ∈ RD sampled from E and fε,i ∈ R, respectively, where ξε,i = ξi + εξ,i,

fε,i = fi(ξi) + εi with E(εξ) = ~0, E(ε) = 0, and ξi ∈ M. Let D = ξε,1:n ∈ Rn×D. We assume

that we are given the intrinsic dimensions dM of M and dE of E , as well as an embedding

dimension m of B := φ(M). We assume that a manifold learning algorithm embed is

available, which outputs an embedding φ(D) := φ(ξε,1:n) of the data in Rn×m satisfying

certain conditions. We also assume that εξ and ε are possibly dependent, and εξ is allowed to

1Here we consider a smooth manifold to be of class C3 and a smooth function of class C1.
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depend on ξ. Our goal is to estimate gradM f , the gradient of f w.r.t. M.

We tackle two intermediary problems. First, we provide an estimator for TξiM based

on a learned embedding map φ of D, and give a sufficient condition on this map for our

estimator to give the tangent space. Second, we use this estimate in a subsequent estimation

of gradM f from D and fε,i = fi + εi, where Cov(ε, εξ) 6= 0. We can extend this function to E

as f : E → R given by f(ξε) = f(ξ). Thus, fε(ξε) = f(ξ) + ε.

The rest of this section contains concepts from differential geometry and classical regression

that introduce our combined estimator. For more details the reader should consult (118) for

the former and (154) for the latter.

6.2.1 Manifold learning and fibered manifolds

In this Chapter we explain the use of manifold learning for estimating tangent spaces TξiM,

and subsequent use of these tangent spaces in estimation of gradM f(ξi). This application

uses the definition of fibered manifold from Chapter 2 - a triple (E ,B, φ), representing total

space, base space, and projection, respectively, related by φ : E → B where φ is a surjective

submersion - to model the removal of noise by a manifold learning algorithm. For a pair of

submanifolds M and E such that M⊂ E ⊂ RD as above, we define a Manifold Learning

(ML) map to be a map φ : E → Rm so that (E , φ(M), φ) is a submersion. Thus, in our setting,

B = φ(M). Since our goal is to preserve the structure of the underlying manifold M, it is

natural to require that the restriction φ|M :M→ B is a diffeomorphism. Points in E \M

are mapped by φ to B; hence, regarding φ as a submersion rather than a diffeomorphism

explicitly models the removal of noise.

The mapping φ induces a fibered structure on the tangent bundle of noise manifold E ,

expressed as

TξεE = Hφ
ξε
E × VφξεE , (6.1)

where Hφ
ξε
E and VφξεE are known as the horizontal and vertical spaces in TξεE induced

by the mapping φ. The vertical space VφξεE := ker(Dφ(ξε)), while the horizontal space
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Hφ
ξε
E := TξεE/V

φ
ξε
E . Note that in this chapter we write Dφ - the differential of φ - as

DφmD := [∇Eφk(ξ) k ∈ 1 . . .m]T ∈ Rm×D in order to indicate the number of coordinates of

our feature and embedding spaces.

6.2.2 Estimation of gradients from samples

Our goal is to estimate gradM f. For convenience, we also define ∇Mf(ξ) := TMξ TMξ
T∇ξf ,

which is gradM f expressed in coordinates of RD. This ∇Mf(ξ) is invariant to choice of TMξ .

A standard estimator for gradM f(ξi) is implied by Equation 2.9 and Proposition 33.

fε,i′ − fε,i ∼ 〈ξε,i′ − ξε,i, gradM f(ξ)〉 (6.2)

where i′ ∈ Ni is within a a sufficiently small locally linear neighborhood of ξi (140). Thus,

given local covariate and response matrices

δξεi := [ξε,i′ − ξi : i′ ∈ Ni] ∈ R|Ni|×D and (6.3)

δfεi := [fε,i′ − fε,i : i′ ∈ Ni] ∈ R|Ni| (6.4)

Equation 6.2 then suggests an estimator

∇̂Mfε(ξ) = ols(δξεi , δ
fε
i ). (6.5)

In our manifold setting, the design matrix will typically be rank dE < D. As an alternative

approach to the implicit estimation of the tangent space occurring during pseudoinverse-based

thresholding discussed in Section 2.4, we can apply the wlpca algorithm from the previous

chapters to estimate TMi prior to solving

̂gradTMi f = ols(δξi T
M
i , δfi ). (6.6)

Unfortunately, as shown by Proposition 2.13 in Section 2.4, the OLS estimator is not

consistent when the covariates ξ are observed with error, even when the design matrix is full

rank. Bias will result when Cov(ε, εξ) 6= 0, and even when εξ, ξ, and ε are jointly independent,

in which case it is called attenuation bias. The improvement of estimates made using local

linear regression under correlated noise has motivated a multistage least squares estimators

(15).
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6.2.3 Estimation of TξiM

The tangent space TξiM must be estimated so that the ols design matrix is full rank. This

step is essential for many gradient estimation algorithms (17). However, the local-PCA based

approach TSLasso used throughout this thesis has problems with noise. For example,

consistency requires noise tending to 0 as n→∞ (155; 6). In particular, the neighborhood

radius parameter r must be shrunk to 0. Since this approach is not reasonable for i.i.d. noisy

data, alternative approaches are required. One contrasting heuristic is to use a neighborhood

radius larger than the magnitude of the observed noise (51).

Our approach takes inspiration from elsewhere in the linear regression literature. Slice

inverse regression (15) and its local counterpart (192) propose methods whereby data are

projected onto the span of regression coefficients. We will combine this idea with the globally-

informed noise-reducing properties of manifold learning. In the next sections, we propose a

suitable response variable and give a condition under which this procedure may be used to

estimate TξiM.

6.3 Embedding-based tangent space estimation

In this section we show how an embedding map φ may be used to obtain estimates of TξiM

in the presence of noise. We estimate Hφ
ξε
E , the horizontal space of the embedding map φ

within the noise manifold E . Section 6.4 then gives a condition under which Hφ
ξε
E = TξM.

This condition is that φ(ξε) = φ(cpM(ξε)) = φ(ξ) where cpM is the closest point mapping

from E to M. This condition is proved in Section 6.4.

Given a data point ξε,i, the EmbedTS algorithm based on this idea takes as input local

data matrices δξεi , as well as local embedding matrices

δφi := [φ(ξε,i′)− φ(ξi) : i′ ∈ Ni] ∈ R|Ni|×m. (6.7)

Step 1 computes localized geometric information necessary for estimating differential quantities.

Step 2 then computes the tangent space of the noise manifold E necessary for a well-defined

solution of ols. Note that since this manifold contains the noise by definition, it is in a sense
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noiseless, and can be estimated at a minimax optimal rate by a local PCA algorithm (6). Step

3 then estimates the differential Dm
Dφ of the embedding map φ in the original coordinates

RD. Note that here we solve a multivariate ols consisting of treating each response variable

φk independently and concatenating the output coefficients. The resulting coefficients are an

estimate of D̂φmD . Theoretically, D̂φmD is rank dM , and Step 5 extracts its dM -dimensional

principal subspace which represents the horizontal space of φ. The right singular vectors of

D̂φmD are then used to construct an estimate of the tangent space TMi in Step 4. Note that

this final step assumes that our closest point condition Assumption 1 is satisfied.

Algorithm 10 EmbedTS(Local data δξεi , local embedding coordinates δφi , intrinsic

dimensions dM and dE, kernel bandwidth ε)

1: Compute normalized Gaussian kernel row Ki,Ni using δ̃ξεi and ε (see Section 2.3)

2: Compute T̂ Ei ← wlpca(δξεi , Ki,Ni , dE)

3: Compute D̂φmD ← ols(δξεi T̂
E
i , δ

φ
i )T̂ Ei

T

∈ RD×m

4: Compute T̂Mi ,Σi, V
T
i ← svd(D̂φmD , dM)

5: Output T̂Mi
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Figure 6.1: Our framework for tangent space estimation. Inclusions are shown in green,

submersions in purple, and diffeomorphisms in yellow. Blue refers to our observables. Red

refers to the output of a manifold-learning algorithm. RD and Rm are the feature and

embedding spaces, respectively. Our goal is the estimation of TξM at various data points ξε

drawn from E . 6.1a - 6.1f Our tangent estimation strategy. 6.1a An example of data with

multiscale non-i.i.d. noise. 6.1b Diagram of the manifold M and the noise manifold E. 6.1c

The learned embedding. 6.1d, 6.1e Gradients of embedding coordinates estimated using local

linear regression. 6.1f Our estimated tangent spaces.

To see the visual intuition of our method, we depict the steps in our estimator in Figures

6.1b - 6.1f. Figure 6.1a shows some data sampled from E , while Figure 6.1b shows the true

underlying tubular structure around the base space M. In this depiction, we have relaxed

the manifold structure of E to show multiscale noise. Figure 6.1c shows a learned embedding
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which is diffeomorphic to the circular base space. Figures 6.1d and 6.1e show estimated

gradients of the coordinate functions of this embedding made w.r.t. TξεE in the depicted

neighborhoods. Note that these neighborhoods are smaller than the magnitude of the noise.

Since φ is a diffeomorphism of the base space, at least one coordinate gradient must be

non-zero at any given point. Figure 6.1f shows how these gradients are combined to show

tangent spaces. Estimation of such tangent spaces given these small neighborhoods is a key

advantage of our method.

6.4 Sufficient conditions

We provide a general property on the embedding map φ that implies that it is suitable for

estimation of TξM. Our main theoretical objective is to establish a correspondence between

Hφ
ξε
E and TξM. To see why this is desirable, recall that our problem statement assumes

that the space E is a tubular neighborhood (75; 6; 128). Within this space, we can define

a Euclidean closest point function cpM : E →M given by cpM(ξε) = arg minξ∈M ‖ξε − ξ‖2

(128). Then, cpM(ξε) is our best guess for ξ, since, by our assumption that εξ is confined to the

normal space, cpM(ξε) = ξ. However, the map cpM is unknown, as is DcpM, which projects

into the tangent space TcpM(ξε)M, and from which we could therefore recover TcpM(ξε)M

exactly.

We thus propose that this tangent space can be recovered from Dφ instead, given that φ

also satisfies one more key condition.

Assumption 1. φ(ξε) = φ(cpM(ξε)).

Note that, by our previous assumption that εξ lies in the normal space Nξ(M, E), we have

that cpM(ξε) = ξ, so we can simplify the above as φ(ξε) = φ(ξ). Before giving our main result,

we require one further lemma. Although we use the notation f for an arbitrary function, we

will apply this result to embedding coordinates φk rather than the response variable f .

Lemma 50. Given a function f : E → R satisfying f(ξε) = f |M(cpM(ξε)), and points

x ∈ R, ξ ∈ M, ξε ∈ E s.t. f |M(ξ) = f(ξε) = x, the level sets of f at levels x satisfy
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Tξεf−1(x) ⊇ Nξ(M, E) for all ξε s.t. cpM(ξε) = ξ.

Proof. This proposition is adapted from (128) (see Definition 3.1 and Theorem 3.7). Given a

value x ∈ R, we define the level set of f w.r.t. x to be f−1(x) := {ξε ∈ E : f(ξε) = x}, and

similarly for a map with manifold codomain. Note that, for a smooth map, this preimage

locally has manifold structure, and so we can consider its tangent spaces. Theorem 3.7 of

(128) gives that the level sets of cpM intersect M orthogonally, i.e.

Tξcp−1
M(ξ) = Nξ(M, E)

within a tubular neighborhood E of M.

We make two adjustments to this proposition. First,

Tξεcp−1
M(ξ) = Nξ(M, E)

for all ξε s.t. cpM(ξε) = ξ. This is true in particular for the Euclidean closest point function.

The shortest Euclidean path between two points is a straight line, and so cp−1
M(ξ) is a linear

space, and thus, Tξεcp−1
M(ξ) = Tξ′εcp−1

M(ξ) for all ξε, ξ
′
ε ∈ cp−1

M(ξ). We can then choose ξ for ξ′ε.

Second, in contrast to cpM, which is a submersion onto a dM dimensional manifold, and thus

rank dM , we make no restriction on the rank of f . For this reason,

Tξεf
−1(x) ⊇ Nξ(M,E)

for all ξε s.t. f(ξε) = x and ξ s.t. cpM(ξε) = ξ. In particular, f−1(x) ⊇ cp−1
M(ξ) where

f |M(ξ) = x. Therefore, Tξεf
−1(x) ⊇ Tξεcp−1

M(ξ) where f(ξε) = x, f |M(ξ) = x.

We have shown that, given the closest point condition on f , the level sets of f span

the normal space of M in E . Our main result applies this to coordinate functions φk of an

embedding map φ and their gradients.

Proposition 51. Suppose we are given data ξε describe as above, and φ s.t. φ(ξε) =

φ(cpM(ξε)) and φ|M is a diffeomorphism from M to B, then Hφ
ξε
E = TξM.
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Proof. By the definitions of horizontal and vertical space, Vφξε = ker(Dφ) and Hφ
ξε

= TξεE/V
φ
ξε

,

we have that Hφ
ξε

= rowspan([gradE φ
k(ξε) : k ∈ 1 . . .m]). We therefore want to show that

rowspan([gradE φ
k(ξε) : k ∈ 1 . . .m]) = TξM.

First, since gradients are perpendicular to level sets, gradE φ
k(ξε) ∈ TξεE/Tξεφk

−1
(x) for x

and ξε s.t. φk(ξε) = x. Thus, Lemma 50 implies that gradE φ
k(ξε) ∈ TξεE/Nξ(M, E), where

cpM(ξε) = ξ. Since ξε is sampled from a ball that is perpendicular to M within a tubular

neighborhood, cpM(ξε) = ξ, and so TξεE = TξM× RdE−dM = TξE . Since the normal space

Nξ(M, E) is defined as Nξ(M, E) = TξE/TξM, the above implies that rowspan([gradE φ
k(ξε) :

k ∈ 1 . . .m]) ⊆ TξM.

On the other hand, since φ is a surjective submersion onto B = φ(M), it is a rank dM map,

and so [gradE φ
k(ξ) : k ∈ 1 . . .m] is rank dM . Thus, rowspan([gradE φ

k(ξ) : k ∈ 1 . . .m]) =

TξM.

Proposition 51 gives an intuitive geometric condition for a learned embedding φ to be

usable in EmbedTS. In the next section, we will apply this method to estimation of gradM f

of an observed covariate f . This will result in a two-stage estimator.

6.5 The EmbedGrad algorithm

With TξiM estimated, we now turn our focus to estimation of gradM f from noisy observed

data ξε and fε. A mathematical schematic of our full problem setting is given in Figure 6.2.

M and E are assumed to meet the conditions given in Section 6.2, and φ(M), our learned

embedding, satisfies Assumption 1.

Given a data point ξε,i, the EmbedGrad algorithm takes as input local data matrices

δξεi and δfi , local embedding matrices δφi , intrinsic dimensions dM and dE, and smoothing

bandwidth ε. The local position matrices are computed using neighborhoods Ni identified

as in Section 2.3 using a neighborhood radius parameter such as r = 3ε. We first call

EmbedTS in Step 1 to estimate TξiM. Subsequently, Step 2 projects the local data δξεi into

this tangent space prior to solving a local linear regression to estimate gradM f(ξ). Note that,
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assuming exact estimation of TξiM, the obtained gradient in this step is automatically in

TξiM because the regressors are already in this space. Therefore, we also optionally return

∇̂Mf - the gradient in the original coordinates.

RD Rm

E B

M f(M)

fε(M)

φ

⊂ ⊂

+εξ

f

φM

+ε

Figure 6.2: The functional setting of error-in-variables gradient estimation. Inclusions are

shown in green, submersions in purple, and diffeomorphisms in yellow. Blue refers to our

observables. Red refers to the output of a manifold-learning algorithm. RD and Rm are the

feature and embedding spaces, respectively. Our goal is the estimation of gradM f at various

data points.

Algorithm 11 EmbedGrad(Local data matrices δξεi and δfi , local embedding matrices

δφi , intrinsic dimensions dM and dE, kernel bandwidth ε)

1: Compute T̂Mi ← EmbedTS(δξεi , δ
φ
i , dM , dE, ε)

2: Compute ̂gradM f(ξi)← ols(δξεi T̂
M
i , δfεi )T̂Mi

T

∈ RD for i = 1 : n

3: Output ̂gradM f(ξi) (optional ̂∇Mf(ξi) = T̂Mi
̂gradM f(ξi) )

Hyperparameters We fix neighborhoods and weights over all our subalgorithms to illus-

trate the differentiating features of our approach. Fixing a radius for both gradient estimation

and local PCA was used in (17). In general, choosing the neighborhood scale for manifold

(16; 186; 117; 51) and tangent space (45; 6; 155) estimation in noise is an incompletely solved



135

problem.

Computation The complexity of the SVD step is O(|Ni|)D ∨ D3. Linear regression is

O(qd2
E + Dd3

E) where q =
∑

i∈I |Ni|. The neighborhood computation - also the expensive

part of many embedding steps - is D log n.

6.5.1 Variants and extensions

Gradient estimation The local linear regression estimator that we use exemplifies the

role of the tangent space in gradient estimation, since comparison of Proposition 2.13 with

respect to our gradient estimation problem shows that a non-zero value of Cov(ε, εξ) will

cause the estimator to be biased. However, many classes of both simpler (142) and higher-

order estimators exist (125). We do not exhaustively examine these here, but note that

projection onto TξM is necessary for computing gradM f regardless of estimator. Furthermore,

estimators such as those introduced in (17) explicitly make use of the tangent space estimate

as a regularizer, and claim this can have a substantial benefit on convergence, regardless

of Cov(ε, εξ). We therefore also examine the effect of estimation of TξM in the case of

uncorrelated noise in Section 6.6.

Tangent space estimation Our EmbedTS estimator of DφmD is related to performing a

localized slice inverse regression using the Laplacian eigenfunctions to provide an effective

dimension reduction space (193). However, other methods for establishing linear relationships

could be used (30). In particular variety of adaptations of generalized eigenproblem-based

decompositions including the first stage in two-stage least squares, in which δξεi is predicted

using δφi , could also be applied to our overall mathematical set-up. Total least squares in an

interesting limiting case of these methods, as it corresponds to local principal components

with the inclusion of the embedding in the feature set (94).
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Dimension Estimation Our approach connects to estimation of dM , the intrinsic dimen-

sion of M . Two archetypal classes of intrinsic dimension estimators are those which rely on

the spectra of local principal components, and those which are based on geometric quantities

like the rate of increase of samples in balls of radius r (121; 63). We draw a connection to the

former (45). The theoretical rank of DφmD is dM , so we can estimate dM from the spectrum

of DφmD . This can be understood in the context of our least squares estimator. Since B is

dM dimensional, the local difference matrix δ̃φi has rank dM within a sufficiently small ball.

Therefore, D̂φmD estimated using the usual ols regression formula necessarily has rank ≤ dM

as well, and spectral decomposition of our estimator gives an estimate of the tangent space

that inherits dimensionality from the embedding. Thus, the spectrum of D̂φmD can be used

to estimate the dimensionality of M. Note that it is the intrinsic dimension of B, not the

number of embedding coordinates m, that is important. However, if increasing m causes B to

be diffeomorphic to a larger space than M (for example, E in the limit), then this estimator

is no longer applicable. This property is examined experimentally in Section 6.6.

6.6 Experiments

We demonstrate our method on several real and simulated examples. The numerical study of

estimation accuracy is challenging, since an estimator that is biased for estimation may still

provide good predictions. Therefore, we begin by evaluating our approach in simulation.

Our main experimental emphases are the preferable performance of EmbedTS to wlpca ,

and EmbedGrad to ols with wlpca-based estimation of TMi or T Ei . Recall that, at a

minimum, T Ei must be estimated prior to solving ols(δξεi T̂
E
i , δ

f
i ) in order for the solution to

be well-defined. To control for variability between methods, we fix a radius, neighborhood

graph, and bandwidth for use in both wlpca and EmbedTS. Hyperparameters and other

information are given in Table 6.1.

Information We list the parameters and dataset information for our two main experiments.

Note that for the SDSS data, the data are mapped from the original 3750 dimensional space
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to a 50 dimensional PCA space prior to running embed and EmbedGrad. Empirically, for

the Sloan Digital Sky Survery data discussed in Section 6.6.2, the multiscale data distribution

necessitates use of k-nearest-neighborhoods rather than radius-based neighborhoods for

generation of a smooth multidimensional embedding.

Experiment n p dE dM γ r Num. Nebs. m

Swerved cylinder 10000 3 2 1 .25 .25 6

SDSS 74628 50 20 2 35000 60 3

Table 6.1: Parameters and data information. wlpca, EmbedTS and EmbedGrad are

performed with the same bandwidth γ, neighborhood radius r, or num. neighbors.

6.6.1 Toy data

We create two simulations of error-in-variable gradient estimation. For both, our manifold

is parameterized in 3 dimensions as [2 cos(θ), 2 sin(θ), sin(θ)2] for θ ∈ [0, 2π). This is a

challenging manifold to perform classical dimension reduction on due to its nonlinear nature.

We add Gaussian noise ξε ∼ N(0, .2) in the ”vertical” normal direction, i.e. the quotient of

the normal space by the radial direction. This gives a manifold with dE = 2 and dM = 1.

Our response function is fε = θ + ε, where ε ∼ N(0, .6). In our first simulation, cor(ε, ξε) = 1.

Figure 6.3a shows the manifold colored by the fε with such correlated noise. In the second,

the two error terms are independent. However, there is still reason to believe that a projection

onto TMi rather than T Ei may be beneficial (17; 45). We evaluate our tangent space estimator

and resultant gradient estimates with respect to 1 and 2 dimensional tangent space estimates

made using wlpca across 100 data points. Embedding coordinates are shown in Figure 6.4.

Our results show that, at these hyperparameters, EmbedTS estimates the true TMi with

lower error than wlpca. We first illustrate that spectral gaps of both the differential D̂m
D used

in EmbedTS and the local weighted covariance from the penultimate step of wlpca given in
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Section 2.3.6. Comparing Figures 6.3b and 6.3c shows that EmbedGrad generates tangent

spaces with larger spectral gap. This reflects the clean low-dimensional embedding in Figure

6.4, and contrasts with the noise in Figure 6.3a. Figure 6.3d then shows that EmbedTS per-

forms preferably to wlpca in maximizing the normalized similarity 1
dM
‖T̂Mi

T

TMi ‖2 between

the estimated and true tangent spaces.

These tangent spaces also yield lower error in subsequent gradient estimation. Figure

6.3e shows gradient estimates made with respect to the dE = 2 dimensional tangent space,

while Figures 6.3f and 6.3g show gradients estimated in dM = 1 dimensional tangent spaces

estimated by wlpca and our approach, respectively. Figure 6.3h confirms what is visually

evident that EmbedGrad method performs preferably w.r.t. `2 loss. Figures 6.3i- 6.3k

show gradients estimated in uncorrelated noise, and 6.3l shows the preferable performance of

EmbedGrad.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Results for wavy cylinder simulation evaluated at 100 data points. 6.3a Data

colored by fε with correlated errors shown on E . A neighborhood is shown in red. 6.3b

The spectrum of the local covariance used by wlpca. 6.3c The spectrum of the D̂φmD . 6.3d

Tangent space recovery error. 6.3e - 6.3h Results for correlated errors. 6.3e Estimates of ∇Mf

obtained w.r.t. two-dimensional TξεE at 20 data points. 6.3f Estimates of ∇Mf obtained

w.r.t. the first component (i.e. estimate of TξM) of wlpca. 6.3g Estimates of ∇Mf obtained

using EmbedGrad. 6.3h Error of gradient estimates. 6.3i - 6.3l Results for uncorrelated

errors. 6.3i Estimates of ∇Mf obtained w.r.t. a two-dimensional TξεE at 20 data points. 6.3j

Estimates of ∇Mf obtained w.r.t. the first component (i.e. estimate of TξM) of wlpca.

6.3k Estimates of ∇Mf obtained using EmbedGrad. 6.3l Error of gradient estimates.
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Figure 6.4: The 6 coordinates of the curved cylinder embedding used in EmbedGrad. These

plots suggest that the embedding includes eigenfunctions that are harmonics of each other,

but nevertheless that the learned manifold is a circle diffeomorphic to the base space.
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6.6.2 Gradient estimation in astronomy

Our motivating application comes from astronomy. The Sloan Digital Sky Survey dataset

contains several modalities of data on galaxies (26). One of these describes the intensity of

the observed signal corresponding to each galaxy at 3750 different wavelengths. This dataset

is a classic use-case for manifold learning, since the observed data are concentrated around

some low-dimensional manifold (43). Another data modality consists of other quantitative

descriptors of the galaxies such as mass. Some of these descriptors such as band head index

D4000 are calculated from the spectrographic measurements themselves, so we might expect

them to be correlated with the observed intensities. Despite this, we do not have access to the

analytic gradient, and so we therefore use D4000 as an exemplary black-box function whose

gradient we wish to compute. Since we do not have access to the ground truth with which to

quantitatively evaluate our estimates, we instead call attention to several key features of our

results.

The D4000 covariate function is plotted in the top three embedding coordinates in Figure

6.5a. Our task is to estimate the gradient of this function with respect to the data manifold

in the original, high-dimensional feature space. To slightly simplify the problem, and for the

purposes of plotting, we first project the data from 3750 dimension down onto the top 50

principal components. The projections of each galaxy into this space are the ξε,i on which we

apply EmbedGrad.

Pairplots of these ξε given in Figures 6.6, 6.8, and 6.7 show that that the observed data is

seemingly much higher-dimensional than the learned two-dimensional embedding. In contrast,

the spectra obtained using wlpca at 100 data points shown in Figure 6.5b implies that the

data is locally one-dimensional, with a steadily decreasing rate of eigenvalue decay up to

dE = 20. This is the typical of the difficult-to-interpret spectra generated by this algorithm

on noisy data. It also contrasts with the clear spectral gap in D̂φmD between two and three

dimensions in Figure 6.5c at m = 3 and, particularly, m = 4. In order to examine the effect

of embedding dimension on the spectra of the obtained tangent spaces, we include results
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up to m = 9. While these do not show a clear spectral gap, the overall rate of eigenvalue

decay is more rapid than for wlpca, indicating that the embedding coordinates are sharply

identifying a lower-dimensional structure.

We plot results for D4000 gradients at 10 data points estimated using wlpca tangent

spaces of dM = 2 and dE = 20 dimensions, as well as EmbedGrad results, in the top 6

coordinates of the PCA feature space in Figures 6.6, 6.8, and 6.7. Figure 6.8 shows the

gradients computed w.r.t. M by EmbedGrad. Despite being constrained to lie in only

a two-dimensional space and estimated using only 60 neighbors, these gradients provide a

visually reasonable parameterization of the visualized high-dimensional data.
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(a) (b)

(c)

Figure 6.5: Application to the SDSS dataset. 6.5a A learned manifold in the top three

embedding coordinates colored by the D4000 covariate function. 6.5b The spectrum of the

estimated tangent spaces using wlpca. 6.5c The spectrum of the estimated tangent spaces

obtained using EmbedTS at various embedding dimensions m.
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Figure 6.6: Gradients ∇E of D4000 estimated using a 20 dimensional wlpca tangent space.

Data is plotted in the top 6 PCA coordinates, and colored by D4000.
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Figure 6.7: Gradients ∇M of D4000 estimated using a 2 dimensional wlpca tangent space.

Data is plotted in the top 6 PCA coordinates, and colored by D4000.
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Figure 6.8: Gradients ∇M of D4000 estimated EmbedGrad with dE = 20 and dM = 2.

Data is plotted in the top 6 PCA coordinates, and colored by D4000.
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6.7 Discussion

Our EmbedGrad algorithm is a two-stage algorithm that uses learned representations to

estimate the data manifold tangent space before performing a local linear regression in the

tangent space. By using a globally-informed embedding to estimate local structure, we see

better performance than using a purely local estimator. This idea suggests several related

lines of research.

From a theoretical perspective, showing that an embedding satisfies Assumption 1 asymp-

totically would be very useful. Consistent estimation of an embedding satisfying Assumption

1 seems to be a useful criteria for judging manifold learning algorithms. Both Principal

Components Analysis and Principal Curves (79; 100) satisfy our main assumption in the

infinite data limit. However, the former is only consistent for linear manifolds, and the later

finds the curves in the original high-dimensional space, and so does not leverage the flexibility

of Proposition 51. Other embedding algorithms that favor smoothness, such as Maximum

Variance Unfolding (190), could also potentially be used. In our setting, given the similarity

between the spectral decomposition in wlpca and Diffusion Maps, our choice of embed, it

seems plausible that one could prove that the top eigenvectors of the sample Laplacian are

more robust to noise than the top eigenvectors of wlpca. However, even the convergence of

Laplacian Eigenmaps also requires asymptotically decreasing noise, although, promisingly,

the rate of decrease is slower than for local PCA (171; 6) (see also Section 2.4). Compared

with the recent method of (155), we could see our approach having an advantage in, for

example, datasets consisting of disjoint manifolds. More generally, convergence results for

multistage least squares algorithms would seem to have relevance for deep networks.

Given an embedding satisfying Assumption 1, there are several alternatives to our slice

inverse-type regression method for estimating TξM given the fiber assumption with two-stage

and partial least squares-type approaches (30). This includes the slice inverse regression-type

method used here (193; 192), but also partial least squares and the first stage of two-stage-

least-squares. These are all variants of the generalized eigenproblem (106; 14; 73), and it
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seems plausible that techniques for analyses of M-estimator could be used to assess which

approach is asymptotically optimum (184). Note that the first stage of our estimator would

not be necessary if obtained via differentiable programming rather than estimation.

The concept of a multidimensional or rank-deficient map is well-studied in the differential

and algebraic geometry literature (18), but despite its relevance to practical datasets (79; 146),

statistical accounting for multiscale and mixed-rank structure is limited (22; 168; 202). The

effect of rank-deficiency of the embedding is is evident through comparison with methods

for associating gradients in embeddings and feature spaces (127; 131). These approaches

transform vectors between spaces of equal dimensionality, while we identify the counterpart of

a lower-dimensional space within a higher-dimensional space. Relatedly, we note that there is

no requirement that the embedding φ be an isometry w.r.t. the induced metrics from RD,Rm,

since the amount of local distortion is captured by Σi in EmbedTS. We note that estimation

of gradients of embedding functions via local linear regression gives an alternative estimator

of the pushforward Riemannian metric that does not rely on the asymptotic linearity of the

estimator of the Laplacian.

This method and its presentation in this chapter have several limitations. The hyper-

parameters in embed, wlpca, and EmbedGrad have an effect on the results. However,

wlpca hyperparameters that perform comparably to our method require large neighborhood

sizes different from those suggested in theoretical analyses of wlpca, and do not generate

as clear of a spectral gap as our approach. We also have not proved that an embedding

algorithm satisfies our main assumptions, and did not examine estimability of ∇Eφ
k. Our

use of consistent neighborhood sizes and smooth parameters between algorithms is critical

fair comparison of tangent spaces learned using wlpca and our method, since we would like

for the localized parts of each algorithm to ’see’ the same data, so that the only difference is

the computation of local covariance (in wlpca) and gradients of embedding coordinates (in

EmbedTS). If the radius is too small, then both wlpca and EmbedTS perform poorly

for estimating TξM, but the latter fails because the embedding may become diffeomorphic to

E rather than M, while the former fails due to inability to observe global structure. This
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obstacle posed by small neighborhoods for finding a ’good’ embedding may be particular to

our choice of embed, and it is possible that a different approach would have more success.

At large radius values, we found that wlpca can be as successful as EmbedTS, albeit with

a small spectral gap. However, this good performance is different from that guaranteed in

the typically-studied asymptotic regime. We emphasize that our results hold at intermediate

neighborhood sizes where a successful embedding (in terms of generating a diffeomorphic

manifold to M) is generated, but wlpca fails. Furthermore, the matrices resulting from

application of wlpca prior to our embedding-based tangent estimation must necessarily be

well-conditioned for ols to be used, but the role of the dimensionality of the noise manifold E ,

the extent to which estimation deteriorates in the absence of favorable conditioning, and the

benefit of our replacement of the Moore-Penrose inverse with wlpca are still unexplored.
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Chapter 7

CONCLUSION AND FUTURE DIRECTIONS

This thesis has proposed several algorithms in the area of interpretable unsupervised

learning. Chapters 3 and 4 introduced a sparse convex regression approach for identifying local

diffeomorphisms from a dictionary of interpretable functions. In Chapter 3, this algorithm

made use of an embedding learned by a manifold learning algorithm, while in Chapter

4, this algorithm was applied without the use of a precomputed embedding. Chapter 5

then introduced a simpler set of alternative algorithms that avoided issues stemming from

sparse regression, characterized the tangent space version of this algorithm as identifying

isometries when available, and gave a two-stage algorithm combining this approach with the

computational advantages of the algorithms in Chapters 3 and 4. Chapter 6 then introduced

an alternate tangent space estimator based on a learned embedding, and used this as an initial

estimator to tackle the related gradient estimation problem. Together, these approaches

provide a toolbox of methods for computing and associating gradient information to learn

descriptive parameterizations of data manifolds.

Interpretability is important for human understanding and decision making. However, as

we observed in (36), it is also important for improving sample-efficiency of learning. Further

research on this topic motivated by both of these considerations is ongoing (53). The gradient

group lasso approach could be used both in this area, and also potentially in optimization of

deep networks. The selection of which functions to include in feature set also deserves special

attention. We have shown results identifying torsions as parameterizing manifolds observed

in a planar angle feature space. This selection is to an extent arbitrary, but nevertheless

it is possible that notions of intrinsic curvature, functional independence, and probability

could resolve the ambiguous question of what makes a parameterization ”best”. Similarly,
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topological data analysis for mixed rank or other topologically complex structures is required

for a more precise accounting of data geometry. Basic homological invariants insufficiently

describe non-manifold shapes like the pinched torus. More speculatively, since atoms of the

same type are interchangeable in the Schrodinger equation, the quantum shape space is

quotiented into a mixed rank orbifold-type object. Although it would also be reasonable to

duplicate the dataset using all possible permutations of alike atoms, more elegant solutions to

this interchangability may also exist (27). Finally, fibration-based characterization of machine

learning algorithms has attracted increasing amounts of attention (34). It is an exciting

question whether this mathematical formalism will result in improved learning performance.
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